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Abstract
The time-dependent behavior of a transversely magnetized, two- .,

dimensional plasma-wall sheath has been studied through particle
simulations, with the aim of modelling plasma behavior in the vicinity
of the limiters and walls of magnetized plasma devices. The simula-
tions have shown that the cross~field sheath between a wall and a
plasma is a turbulent boundary layer, with strong potential fluctua-
tions and anomalous particle transport. The driving mechanism for
this turbulence is the Kelvin-Helmholtz instability, which arises from
the sheared particle drifts created near the wall. Provided it is re-
plenished by an internal flux of particles, the sheath maintains itself
in a dynamic equilibrium, in which the linear edge instability, the
nonlinear dynamics of the particles and the outward particle diffusion
all balance each other. The -sheath~assumes an equilibrium thick-
ness of order l ", 5 pi\andmaintains large, long-lived vortices, with
amplitudes- 6,, 2T/e,"which drift parallel to the wall at roughly
half the ion thermal velocity. The sheath also maintains a large,
spatially-averaged potential drop from the wall to the plasma, with
AO ; -1.ST/e] in sharp distinction with the unmagnetized sheath,
where the plasma potential is higher than at the wall. Accompanying
the long-wavelength vortices is a spectrum of shorter-wavelength fluc-
tuations, which extend to Iki pi - 1 and w , we,, and'which induce an
anomalous cross-field transport. .A central result is that the anoma-
lous transport scales like Bohm diffusion, at least when wp, 2wi. At
lower densities, wp, < 2wi3, the diffusion coefficient has an additional
factor, proportional to the density. These results enable us to model
the cross-field sheath by a simple boundary condition, which relates
the particle flux through the sheath to the edge density and which

can be used as input in any model designed to obtain the bulk plasma
properties.

*This work supported by U.S. Department of Energy Contract No.FG03-86ER53220,
by U.S. Office of Naval Research Contract No.N14-80-C-0507, and by a MICRO grant
with a gift from the Varian Corporation.
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1 Introduction

The following is a report on the results of our particle simulations of the
magnetized plasma-wall sheath. This is a study of plasma transport per-
pendicular to a magnetic field, in a plasma bounded by a conducting wall.
The objective is to model plasma behavior in the vicinity of limiters and
walls of magnetized plasma devices. Our approach has been to use our
two-dimensional, bounded particle simulation code ES2[1], as a tool for
the investigation of edge effects, in an idealized model which retains the
essential features of the edge plasma.

Our simulations have shown that the cross-field sheath between a wall
and a plasma is not a static structure, but is in fact a turbulent boundary
layer, with strong potential fluctuations and anomalous particle transport.
The driving mechanism for this turbulence is the Kelvin- Helmnholtz insta-
bility which arises from the sheared particle drifts created near the wall by
the strongly non-neutral sheath. Provided it is replenished by an internal
flux of particles, coming, for instance, from a central bulk plasma or from
a diffuse ionization of neutrals, the sheath will maintain itself in a dynamic
equilibrium, in which the linear edge instability, the nonlinear dynamics of
the particles and the outward particle diffusion all balance each other. It
is important to emphasize that the turbulent behavior of the sheath is a
completely spontaneous phenomenon, which arises from the self-consistent
plasma-wall interaction, and which does not require the imposition of ex-
ternal fields for its sustenance.

We have found that the cross-field sheath assumes an equilibrium thick-
ness of order 4~ ~. 5 pi, and that it maintains large, long-lived vortices, with
amplitudes bo -. 2T,/e, which drift parallel to the wall at roughly half the
ion thermal velocity. The sheath also maintains a large, spatially- averaged

Z. ~ potential drop from the wall to the plasma, with A0 ;z -1.5T./e, in sharp
N distinction with the unmagnetized sheath, where the plasma potential is

higher than at the wall. Accompanying the long-wavelength vortices is
a continuous spectrum of shorter- wavelength fluctuations, which extend to
Ik ki - 1 and w -~ wa, and which induce an anomalous cross-field transport
of particles. A central result of this paper is that the anomalous transport
in the sheath scales very much like Bohm diffusion, at least when wp, 2W,.
At lower densities, such that wri < 2 wci, the diffusion coefficient is found to
have an additional factor, proportional to the density. These results enable

N 5



us to model the entire cross-field sheath by a simple boundary condition,
which relates the particle flux through the sheath to the edge density. This
boundary condition, which measures the sheath impedance to particle flow,
is usable for any model designed to obtain the bulk plasma properties, and
in which the detailed sheath dynamics are unimportant.

As an aside, we would like to briefly describe our simulations in more
general terms, by using concepts of non-equilibrium thermodynamics. The
vortices, which behave as convection cells, can be considered dissipative

* structures[2], into which the plasma has rearranged itself so as to maximize
* heat and particle fluxes to the boundaries. The vortices have formed, of

course, subject to the constraints inherent in the physical system; these
* are energy and momentum conservation, and the physical length and time

scales available to the plasma. The source of free energy winch maintains
-, these structures resides in the temperature difference between tbe reservoir
* of hot ions and electrons, which are continuously fed into the system, and

the wall, which is kept at absolute zero, insofar as it is a perfect absorber
of incoming particles. Our system is analogous to the configuration lead-
ing to Rayleigh- B4nard convection[31, where convection cells and enhanced
transport are also driven by a temperature gradient. However, the detailed

* dynamics of each system, and the physics of the media considered, are, of
course, very different.

The work described in this Memorandum has also been presented in
[4]. A videotape of a computer animation showing some of the dynamic

-~ features of the cross-field sheath[5J. including the time evolution of potential
surfaces and density profiles, can be obtained from the Plasma Theory and
Simulation Group.

4. 6
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2 Previous Work

The properties of the cross-field sheath can be understood as arising from
the combination of two physical effects, the formation of a static plasma-
wall sheath, and the existence of a sheared-flow instability. These effects
have previously been studied in completely distinct physical situations. As
both fields of study are of relevance to the present work, we shall briefly
review the work which has been done in both of these hitherto separate
domains.

Let us first consider static models of the sheath. The original work on
unmagnetized sheaths goes back to Tonks and Langmuir[6], but the study
of magnetized sheaths is more recent. Particularly close to the situation
considered in the present paper are the works of Delbege and Bein[7] and
Chodura[8], in which the authors have considered the magnetized sheath
which forms between a wall and a plasma. However, there are crucial differ-
ences between their work and the content of the present paper: their anal-
ysis is one-dimensional, and furthermore assumes a magnetic field which
is oblique, and not strictly parallel, to the wall. In this configuration, the
electron dynamics are dominant, and the magnetized sheath is indeed qual-
itatively similar to the unmagnetized sheath.

Let us now consider the second field of study, that of shear-flow instabil-
ities in plasmas. There is a large literature going back to the original work
of Buneman[9] on the "Diocotron" instability. Somewhat more recent work
includes, for instance, that which is presented in articles of Gould[10] and
Knauer[11]. The plasma Kelvin-Helmholtz instability, as opposed to the

one-species Diocotron instability, has been treated by Chandrasekhar[12]
as an MHD instability. In the present paper however, we have especially
drawn on work by Byers[13], Miura and Pritchett[14], and Pritchett and
Coroniti[15]. We have also noted the work of Horton et al.[16], in which
the Kelvin-Helmholtz instability is studied in a configuration with similar-
ities to the present one. We shall discuss these similarities, as well as basic
differences between their model and ours, in the summary of Section 8.

7



3 The Simulation Model

The physical configuration embodied in our computer simulation is an ideal-
ized model of the tangential edge conditions which might exist in a tokamak
or in a variety of plasma magnetrons. We assume that the essential plasma
dynamics are two-dimensional, with all motion confined to the plane per-
pendicular to the magnetic field, with magnetic field lines exactly tangential
to the boundary. The magnetic field is homogeneous and shear-free, and the
model is restricted to electrostatic, collisionless modes. These assumptions
imply that in all that follows, we shall be concentrating on the behavior of
flute-like electrostatic modes, with k~l = 0, driven by charge separation, and
localized in the edge layer In a real device, we are focussing on a distance
much smaller than the scale-length of any magnetic shear,

By focussing on flute-like modes, we are insuring that the assumption
of a magnetic field strictly parallel to the wall does not correspond to
a singular configuration. Rather, we are assuming that the system self-
consistently selects an instability with k1i - 0, for which the assumption of
two-dimensional geometry is automatically valid.

We modelled the two-dimensional plasma-wall system outlined above
with an electrostatic particle-in-cell simulation code, the computer program
ES2[1]. This two-dimensional program is of the explicit type, in that it
incorporates full electron and ion dynamics, and simulates plasma behavior
on the time-scale of the electron gyro-period, w- 1 [17].

The simulation region is shown in Fig.(1). The particles move in the (x-
y) plane, in which they are subject to the external, perpendicular magnetic
field B0 , and in which they also interact with each other, according to
their self-consistent electrostatic fields. Note that both particle velocities
and coordinates are restricted to two components, with v = (v., 1,) and

The simulation region is rectangular in shape, with periodic boundary
conditions on the particles and fields in the direction parallel to the wall
(y), with the wall defining the left-hand boundary. The wall is taken to be a
perfect conductor, imposing a constant potential at x = 0, and is modelled
as a perfect absorber of impacting electrons and ions, with no reflection
or reemission of particles. When a particle hits the wall, it is lost to the
inner plasma, and its charge is immediately accounted for as distributed

8
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surface charge, which in turn is a boundary source in Poisson's equation.
In solving Poisson's equation, the program also automatically accounts for
all charges induced on the wall by the particles moving inside the plasma.

In our simulations, the wall is kept "floating"; it is not connected to an
external circuit, and charge flow can occur only from the plasma to the
wall.

The boundary conditions at the right-hand side of Fig.(1) are an at-

tempt to simulate as best as possible a semi-infinite plasma in x > Lx.
The boundary conditions are the following. For the fields, the surface at
x = L= is an equipotential. For the particles, an inversion symmetry condi-
tion is imposed[18]: a particle exiting at y with velocity (v,, v,) is returned
at y' = Ly - y with inverted velocity (-vi, -vi,). Thus. the boundary at

x = L, can be thought of as a very fine wire mesh which shorts-out the
tangential electric fields, but which is transparent to particles. 'The mesh
separates two plasma regions, which are exactly symmetrical through the
point (Lx, Ly/2), and which consist of the actual simulation plasma, and a
-irtual, spatially inverted "twin" plasma. This inversion-symmetry condi-
tion differs somewhat from the one outlined in (181, because the boundary
at x = L. is taken to be ar, eqiupotential. We believe that this condition
shields the actual simulation region from the fields in its virtual twin, and
thus reduces the interference between the two regions.

In ES2, we have also modelled a distributed plasma source, with which
ions and electrons are continuously created in the system. This is done by
creating electron-ion pairs spatially at random, and at a constant temporal
rate (a constant number of pairs is created at each time step). The electron
and ion in each pair are initially created on top of each other, and are given
random and uncorrelated velocities, chosen from Maxwellian distributions
with T, = T. This source of plasma can be thought of as resulting from
the ionization of a uniform background of neutral atoms, and is essential in
maintaining the system in a steady-state on the time-scale of the cross-field
transport. Over shorter time-scales, an initial loading of warm electrons
and 1)ns with no further pair creation, is sufficient to produce the turbulent
cross-field sheath. with a slow net diffusion of particles to the wall.

In Fig.(1). we have suggested the presence of an underlying heat en-
gine, which drives the processes in the edge layer. We have (lone this by
indicating terr "itures for the wall and for the plasma source: the wall,
which a)sor)s w llr*- ().. particles an(t enUts nlole. cad )e thought of

10
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Run 1: Parameters for the Initial Conditions.

mi/m, 40 Vte 1 AX 1 ,
s* 1.005 vti 0.158 Ay 1 .
W__ 1 Pc 1 At 1 ',

a 0.2 p, 6.32 N. 33
z--j 0.032 L./pi 5.06 Ny 256
we, 0.025 Ly/pi 40.5 1wt,.,,- 1500

Ui/W1,i 1.15 Ade = Ad2  5 N,(t = 0) 15000
up/lw 0.182 nrAd 56 N,(t = 0) 15000

Sq,

Table 1: Parameters for Run 1.

4 Transient Behavior of the Sheath

We shall now consider the results of an ES2 particle simulation, with pa-
rameters given in Table 1. This computer run, which we shall refer to as
Run 1, is the central example to be discussed in this paper. We initialized
the system with a plasma uniform up to the wall, and ran the simulation
with a constant creation of particles. After a fairly lenghty transient phase,
the system settled into a quasi-steady-state, in which the outward transport
of particles balanced the influx from the source, and in which the qualita-
tive structure of the electrostatic fields remained the same. In the present
and following sections, we shall discuss the transient phase of evolution
of the plasma-wall sheath, and examine the growth and saturation of the
electrostatic fields. In particular, we shall present analytic results for the
linear growth of the Kelvin-Helmholtz instability, and we shall qualitatively
describe the mechanisms underlying the subsequent nonlinear evolution of
the system. A discussion of the steady-state, as characterized by its fields.
spectra, and particle transport, is deferred to Section 5 and to the following
sections.

12



Let us examine the conditions implied by the parameters displayed in
Table 1. In Run 1, the plasma region was initially filled with N = 15000
particles of each species, uniformly distributed in space and initialized with
Maxwellian velocity distributions with equal temperatures, T = T. The
ion-electron mass ratio used in the simulation was mi/m, = 40. With the
normalizations assumed in ES2 (c0 - 1, me = e), and with e = m, =
0.018 and B 0 = 1, we have in the units of ES2 w,, = 1, w~i = 0.025,
Vte = (T/m,)'1/2 

- 1, and vt, = (T,/m,) /2 = 0.158. The initial particle
densities were Ifi = T, = N/LLy = 1.83, such that wp, = 0.182 and
wp = 0.0287, giving the dimensionless ratios wp/wo = 0.182 and wpW, =
1.15. We also have the values for the gyroradii and the Debye lengths,
P, = 1, pi = 6.32, and Ad, = Ad, = 5.5, so that the physical lengths satisfy
p, < Ad, = Ad, < p,. The dimensions of individual cells on the mesh
were Ax =Ay = 1, so that we could resolve wavelengths down to, but
not including, the electron gyroradius. Our choice of the initial number
of particles was such as to ensure a large number of particles per Debye
square, with wAd,,, = 55. This large value of the plasma parameter was
needed to keep the thermal fluctuations of the system small compared to
the amplitudes of the collective modes.

In Run 1, our choice of a fairly low particle density, with wp, = 1.15.
enabled us to run ES2 for very long times at a reasonable computational

cost, and thus to accumulate a large amount of simulation data. In Section
7.6 we shall discuss the results from simulations with higher densities, but
shorter running times. However, Run 1 exhibits all the basic features of
the cross-field sheath, and we use it as our central example.

The overall system size was L. = 32 and LY = 256, with a grid \. x
Ny = 33 x 256. Thus the system was elongated parallel to the wall. with
Ly/pi = 40.5 and L,/pi = 5.06. Our choice of Ly > Lr was dictated by our
desire to accomodate several unstable wavelengths of the initially dominant
Kelvin-Helmholtz mode.

The simulation was run with a constant background creation of electron-
ion pairs, at an average rate of s,,, = 1.005 pairs injected into the system
per time step (At = 1). We can better appreciate the injection rate s,,,
if we define defines a characteristic "filling-up" time, rf,11 = N/a,,: this
is the time in which, without outward loss, the number of particles in the
system would double. Thus, we find that for Run I 6c,Tf,1 = 373. In fact.
the choice of s,,, was such that in the steady-state. the total number of

13
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particles in the system would remain close tothein

.1'

I',

particles in the system would remain close to the initial value, a choice

which was not fortuitous, but based on numerical experimentation with
shorter computer runs.

4.1 Evolution of the Total Number of Particles

A global indication of the behavior of Run 1, as it evolved through the
transient phase and into a quasi-steady-state, is to be seen in the time
histories of the total electron and ion populations, N,(t) and Ni(t). In
Fig.(2), we plot N,(t) and N,(t) over the time interval 0 < wt < 1500. In
this figure, a first feature to be noted is that both curves show a sudden

initial drop. This sudden loss of particles results from the scrape-off of
electrons and ions over a layer near the wall, comparable in thickness to
the gyro-radius of each species. The electron loss (AN, g -500) occurs
almost instantaneously, over a few time steps, while the more important ion
loss (ANi ;, -3500) takes place over the longer time-span corresponding
to an ion rotation, wit -_ 27r. The ratio of the numbers of particles lost is
roughly proportional to the depth of the scrape-off layer, with AN/AN,
*,,= 6.32.

Immediately after this initial loss due to scrape-off, both particle popu-
". lations begin to increase in response to the external source. Note that in the

absence of any outward transport, the total number of particles of either
species would increase roughly five-fold during the time-span of the simu-
lation, since the filling-up time for adding 15000 particles is Tll -- 373w.
However, this is not the case. First, the initial rates of increase of the pop-
ulations are lower than the rate of injection from the source. Thus, from
Fig.(2) we find that dN,(t ; O)/dt z dN,(t ; O)/dt = 0.67, smaller than
si,. = 1.005. Furthermore, both dN,/dt and dNi/dt decrease with time,
with a noticeable "bend" occuring in the population curves at wcit 100.
After a fairly long (0 < wit - 1000), but not very pronounced transient, the
system settles into a fluctuating steady-state, with the time-averaged values
of dN,/dt and dNi/dt near zero. In the steady-state, we have N, ; 16500
and Ni 14000, for which the spatially-averaged densities are such that
ulw,, ; 1.11 and Up/w, ,z 0.19. The existence of the near steady-state

in the presence of a constant source of particles is a clear indication of
the existence of an equal and compensating outward transport of particles,

14
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Figure 2: Evolution of the total electron and ion populations in Run 1; the
initial values ae N,(0) = N,(0) = 15000. The initial scrape-off of particles,
where N, drops to 14500 and Ni to 12500, occurs for w~it <27r and appears
instantaneous on the time-scale of the figure.

from the plasma to the wall.

4.2 Evolution of" the El.3ectrostatic Potential

In this subsection, we shall discuss the evolution of the electrostatic poten-
tial over the time interval 0 < welt -. 1000. This interval roughly corre-
sponds to the the transient phase of Run 1 as seen in Fig.(2).

In Figs.(3), we have displayed a series of snapshots of O(x:, y, t) taken at
successive moments in time. Fig.(3a), taken at uo,it = 15, shows the essen-
tially y-uniform sheath which has formed at the beginning of the evolution
of the system, after 21/2 rotations of the ions. This sheath is due to the
initial loss of ions which have impacted into the wall, resulting in a layer of
depletion of positive charge over a depth of about 2 x pi - 12, and a net
positive charge on the wall. The result is a large potential drop from the
wall into the plasma, which in Fig.(3a) is approximately eAOI/T -1.1.
The occurrence of a potential drop from wall to plasma is in sharp contrast
to the situation in the unmagnetized sheath. In the latter, the equilibrium

15

17000

16000

.'.' .'.' . .. ' ,... % . p ".. . . ". " . .'.- . .* , .. .-. " . ... ' , -. ' .... .. '.' . - .. . -1.. ',5000.'. , " . . ... ''



configuration is dominated by the electron flow to the walls, and this results
in a potential rise from the wall into the plasma.

The sheath shown in Fig.(3a) contains a non-uniform electric field E,(x)
pointing into the plasma, with maximum intensity at the wall. Because
of the presence of the external magnetic field, this electric field induces
a downward E x B drift of electrons and ions parallel to the wall, with a

maximum drift velocity which is very close to the ion thermal speed, vy(z =

0) = -E,(x = O)/Bo ; -vt,. Because the electric field is nonuniform, the
resulting flow is strongly sheared in velocity, with a shear length of order
2 x pi. As sheared flow is in general unstable, it might be expected that the
initial structure shown in Fig.(3a) will not persist, with the flow vulnerable
to the Kelvin- Helmholtz instability, This is precisely what is observed in
the subsequent evolution of the potential: y-dependent ripples (which were
already visible in Fig.(3a) ) grow into larger perturbations, which are both
amplified and convected by the E x B flow. This process appears to occur
over a time-scale (e-folding time) which is of order t - 20w-1. In Fig.(3b),
at wcit = 62.5, we see a state with two large and two or three smaller
perturbations of the electrostatic potential, with a wavelength which we
estimate to be A, ..m 60. A measure of the amplitudes of the perturbations
is the potential drop in the cross-sections of O(z,y) taken at z = L,/2,
which range from ek/T ,- -0.08 to ebk/T .-, -0.2.

As the amplitudes of the potential perturbations seen in Fig.(3b) grow,
they undergo a first saturation by forming small vortices with the same
characteristic length, A y 60. These vortices, generated in the time-span
60 < wit - 200, are short-lived because they rapidly coalesce with each
other, forming a smaller number of vortices with A, ; 120. There is also
simultaneous competition from the mode with Ay ; 120, which, as we shall
see in the next section, has a linear growth rate comparable to that of the
AY - 60 mode. The overall effect is to favor the longer wavelength. As
a result, Fig.(3c), taken at w~it = 125, shows a mixed state, "n which two
(coalescing) small vortices (Ay - 60) coexist with a large vortex (A,, - 120).

Thus, the dynamics of the system favor long wavelengths for further
amplification. By wit = 250, Fig.(3d), only two large vortices, each with
e6b/T, .z -1 and A. 120, have survived. These vortices drift parallel
to the wall, in accordance with the local E x B drift, and can be consid-
ered quasi-stable, because they maintain a constant amplitude and survive

16
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Figure 3: Snapshots of the electrostatic potential in Run 1, 0 < W,t <
437.5. Left: contour plots of O(x,y); Right: sections of (x,y) for con-
stant x = 16 = L,/2. Note that in the contour plots, the vertical scale
is highly compressed: without the compression, the vortices will appear
approximately circular (continued on the next page).
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Figure 3: (continued from the previous page) Snapshots of the electrostatic
potential in Run 1, 0 < wit < 437.5. Left: contour plots of O(., y), Right:
sections of 4(z, y) for constant z = 16 -- L./2. Note that in the contour
plots, the vertical scale is highly compressed: without the compression, the
vortices will appear approximately circular.
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'through several transits across the system.
Let us clarify the connection between the potential structures which

we have called "vortices", and the particle motion. If we neglect finite
gyroradii, and assume that the particles move only according to the E x B
drift of their guiding centers, with v = E x B/B 2 = z- x VO/B, then the
electrostatic potential is strictly equivalent to a two-dimensional stream
function for the particle flows (this assumption is better for the electrons,
because of their small gyroradius, and approximate for the ions, because
their gyroradius is a sizeable fraction of the sheath thickness). Thus, the
closed contours of the potential wells tend to correspond to flows with
nonzero circulation, and it is appropriate to refer to these structures as
"vortices".

The two-vortex state of Fig.(3c) is in fact only quasi-stable, and does
not last beyond w,,t - 400, because the vortices are vulnerable to the same
coalescence instability which engulfed their smaller precursors. Figs.(3de,f)
(wcit= 250, 375 and 437.5) show the progression from the state with two
medium-amplitude vortices (e6bO/T -1) to a state with a single, large-
amplitude vortex (e6,J/T ; -2.2). The process appears to occur with one
vortex growing larger than the other, with the vortices then attracting each
other (Fig.(3e)), and finally, with the smaller vortex merging into the larger
one (Fig.(3f)).

Fig.(4), provides a more detailed view of vortex formation and coa-
lescence than is available from the individual snapshots of Figs.(3). We
have produced a time-series of cross-sections of the electrostatic potential
O(,y,t), taken along the midplane of the simulation region, at a fixed
x = L./2 = 16. These cross-sections are identical to those shown in the
right-hand column of Figs.(3) and were produced by sampling the poten-
tial every 100 time steps, up to wcit = 1045. The resulting information is
the two-dimensional function scc(Y, t) (x being fixed and ignorable) and
in Fig.(4), we have displayed a contour plot of this function. In this form,
the vortices of Figs.(3) immediately appear as valleys in the contour map
of 0,,c(y, t). Note that as the system is periodic in y, perturbations exiting
at y = 0 immediately reappear at y = 256. The structure of oblique bands
in the plot make clear the steady negative drift velocity of the vortices.

In Fig.(4), the potential profile 0(y) can be determined at any one time
by drawing a horizontal line through the plot. For instance, a horizontal
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line drawn at wit= 250 intersects the tracks of two vortices, in agreement
with the picture of Fig.(3d). If we now sweep this horizontal line upward.
we can follow in detail the coalescence process which was only outlined in
Figs.(3d-f). Near wcit = 330, the left-hand and larger vortex undergoes a
slight deceleration (its y-directed velocity becomes less negative); somewhat
later, at wit = 355, the right-hand and smaller vortex undergoes a more
sizeable acceleration (its y-directed velocity becomes more negative). There
follows a period of "coasting", 375 < wi < 425, where the two vortices are
in close proximity. Finally, by wit = 425, the two vortices merge together, a
process in which, because of the disparity in sizes, the larger vortex appears
to engulf the smaller one.

Fig.(4) provides quantitative information on the drift velocities of the
vortices, the instantaneous drift velocity being equal to the reciprocal of
the slope of the vortex trajectory in (y, t) space. A notable feature of these
velocities is that the average vortex speed (averaged over one transit of the
system) is almost constant. For instance, at w it = 150, when the vortex
amplitudes are of order e6¢/Ti - -0.5, we find a vortex drfit velocity
v. = -0.069 (It, L/vti = 0.44). At w,t = 1000, when the vortex amplitude
is e6bk/T, ; -2, we find a comparable drift velocity, v. = -0.075 (vyl /vt, =

0.47).
We also note in connection with Fig.(4) that in the final quasi-steady

state, w't > 400, the shear layer is still locally unstable and is capable of
amplifying perturbations at some distance from the main vortex. Thus.
smaller "satellite" vortices are produced. For instance, in Fig.(4) we see
the appearance at w,t ; 950 of a small vortex at a distance 1. 90 to
the left of the main vortex. At weit - 1020, the satellite vortex reaches
a maximum depth of e&o/T, ; -0.6, or about 1/3 the depth of the main
vortex. It is eventually absorbed by the main vortex, by ,,t = 1050.

Finally, we note that as the vortices grow and coalesce, the shear layer
undergoes a concommitant broadening. In Figs.(5a,b), we show the pro-
files for the y-averaged electric field Ef(.r), and for the y-averaged charge
density, i(z) = O!E(x)/Oar, at three successive times. wit = 15. 250, 1075.
Since vy = -E,/B, Fig.(5a) is also a plot of the profile of velocity in the
shear layer. Fig.(5b) shows that the inflection point ."0 of the velocity
profile (v(z 0 ) = -- Lgp(xo)/D = 0) moves outward, and that the overall
profiles broaden. Note that at all times the average shear profile is linearly
unstable, with the inflection point and regions of opposite curvature needed
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Figure 5: Cross-sections of the sheath in Run 1, for w,,t = 15, 250 and 1075;
(a) y-averaged electric field !P,(x); (b) y-averaged charge density p(x).

" for the Kelvin-Heludloltz instability. This feature shows that the satura-
Stion mechanism is not quasilinear (relaxation of the space-averaged shear Z

• ' profile), but indeed strongly nonlinear.

.3 Evolution of the Fourier Modes

We now complement the observations of the previous paragraphs, in which
we identified potential structures in real (t, y) space, with a discussion of the :
evolution of the Fourier transform of the potential, o( , k1, t)2 In Figs.(6)

we show the temporal behavior of the first, four Fourier modes With k, :A 0.
with the Fourier transforms taken along the midplane of the system, at a
fixed = L et/2 = 16. We have plotted both real and imaginary parts of

o(r, ky, t). The time interval is identical to that of Fig.(4), 0 < ,,,t < 1050.
A first salient feature of Figs.(6) is that the phase of exponential growth

of any one mode is quite limited in time. A magnification of the beginning

of Figs.(6) shows that, starting from noise, the exponential growth of the .
modes does not extend beyond roughly two e-foldings. Thus, the progres-
sion of the systemt thethe steady-state occurs for the most part with
what appears to be algebraic growth. This behavior is consistent with the

wihteFuirtrnfrstknaon2h2ipaeoftesse.a
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Figure 6: Temporal dependence of the Fourier modes in Run 1. modes
m = 1. 2, 3 and 4. The Fourier transform is taken along the midplane of
the system, at a fixed x Lr/2 =16. Solid lines: real part; dashed linei:
imaginary part.
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description of the evolution of O(x. y, t) given in the previous section, in
which we saw that a first nonlinear state, with formation of small vortices.
occured as early as wcit - 100 (Fig.(3c). Beyond this point in time, the
dominant mechanisms for the evolution of the instability are nonlinear,
consisting of the continued, nonlinear growth of individual vortices, and
of their pairwise coalescence. A qualitative analogy which comes to mind.
is the nonlinear evolution of MHD tearing-modes, in which the algebraic
growth and the coalescence of magnetic islands bear some resemblance to

*" the behavior of our electrostatic vortices[19].
The coalescence of the smaller vortices into larger ones is a process

indicative, in wavenumber space, of an inverse cascade. In Figs.(6a.b). we
have a clear indication of the two-to-one vortex coalescence which was seen

to occur in real space in the time-interval 250 < <;, _< 437 tFigs.(3d-f)).
the two-vortex state corresponding to the m = 2 mode, and the one-vortex
state to the m = 1 mode. The process begins with the sudden excitation
of the fundamental mode m = 1, at about w,t = 330, coinciding with
the beginning of spatial convergence of the two vortices which was seen in
Fig(4) The actual coalescence process, in which one vortex engulfs the
other, occurs at ,,,t - 400, and is signaled by a sizeable perturbation of
the m = 2 mode.

In Fig.(7) we show the relative amplitudes of the Fourier modes at ,,t
1050, at which time the modes have essentially settled into a quasi-steady-
state. This figure shows that the first 5 or 6 modes are dominant, with
the overall Fourier spectrum strongly cutoff beyond kp, = 1. Finally, let
us note that the short-wavelength modes not only have smaller amplitudes.
but are also more strongly fluctuating, as can be seen by a casual inspection
of Fig.(6) This visual impression is confirmed in the analysis of the steady-
state power spectra P(,,, ku), which we present in Section 6.3.

4.4 Minimum Length for a Two-Vortex Steady-State

In the present simulation, we did not determine the minimum length in y
required for the ex:istence, in the steady-state, of more than one large vortex.
Furthermore, limitations on computational ressources did not pernit us to

explore longer systems in which such a state might appear. We would like
to argue however. using qualitative arguments, that a mrnniuium length for a

24

• '4



+ + . + + +~ ~~~~~~. - . *.+ . ,, , +. , . -,.. ,t _; * ,,+,., . +,, .+, ,", +,. + ., ., . . . . . . ,

I",
3,j

X- 16

31

'4'

(Ae, .

0 1.0 1.9
k YP.
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"44

two-vortex steady-state must exist. In other words, we are suggesting that
it is physically reasonable to suppose that vortex coalescence can go not
on indefinitely, and that the final state of any sufficiently long system will
consist of more than one large-amplitude vortex. To support our assertion,
let us consider a scenario where such a single-vortex state might initially
prevail. We then argue that it may nonetheless result in a many-vortex

state, provided that the system is long enough.
Let us assume that the single, final vortex is roughly circular, and oc-

cupies at any one time a liited extent in y, comparable to the sheath
thickness in x, that is a few ion gyroradii. Then, we cannot overrule the
possibility that in a very, long system the shear layer may produce satel-

Z lite vortices at some distance from the main vortex, as was seen in Fig.(4)
at w:,t -_ 1000. Provided that the system is long enough, and that the
secondary vortices are appearing far enough from the main vortex, these
satellite vortices should have the time to develop large amplitudes of their
own. even if they eventually merge with other vortices in the system. Thus,
in the steady-state the system mnay contain many vortices. In connection
with this scenario, w- would also like to argue that the oldest and largrest
vortices iiiav not grow indeffinitely liv enauflfing, tie satellite vortices. Pre-
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sumably, very large amplitude vortices with e6o/T,j >> I are unstable, and
can shed energy either by interaction with the wall, ,r perhaps emission of
waves. The final result will be a self-limiting state consisting of many large
(but not indefinitely large) amplitude vortices, in constant interaction with
each other.

The qualitative arguments outlined above are clearly insufficient, and
should be supported by future numerical simulation of longer systems.

4.5 Saturation Mechanisms: Climax and Coalescence

We shall now make a comparison between the transient plasma behavior
observed in Run 1. and the transient behavior of the fluid Kelvin- Helmbolt z
instability, as observed in purely hydrodynamic fluid simulations Our aim
is to provide, through this analogy, qualitative explanations of the satura-
tion and coalescence phenomena seen in Run 1. The basis of the analogy
is the close similarity, in the fluid approximation, of the plasma cross-field
equations, to be derived in Section 5, with the hydrodynamic, Navier-Stokes
equation (21).

We note here that a rigorous, analytic solution of the Navier-Stokes
equations for the nonlinear evolution of the fluid Kelvin-Helmholtz insta-
bility is so far lacking. Though a variety of special steady-state solutions can
be found (periodic, soliton-like, localized), there is no rigorous procedure to
predict the appearance of a given kind of nonlinear structure from arbitrary
imtial conditions (as can be done, say, in the case of the Korteweg-deVries
equation). Because of this state of affairs, we expect that a description
of the nonlinear dynamics of our system, even in the fluid approximation,
must remain at best semi-quantitative.

As we saw, the general trend in Run 1 was the following: after a few
e-folding times the linear instability saturated into a state consisting of sev-
eral quasi-stable vortices, which eventually coalesced into larger structures,

- leading to a final unique and stable vortex. This evolution is quite similar
to that observed in numerical simulations of two-dimensional, sheared fluid
flows. For the purpose of the present analogy, we shall especially refer to
the work of Corcos[20,21,22].

Corcos[20,21,22] has presented a qualitative model for the saturation of
single vortices in the fluid Kelvin-Helmholtz instability, starting from small
amplitudes. The saturated state has been termed the climax state. We
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believe that this model is qualitatively valid for the plasma instability as
well, and we shall sketch its outlines. Let us first emphasize the connection
between vorticity and charge density in the plasma fluid. If the plasma
flows are given by v = E x B/B, then the vorticity is simply:

W. = (V x v). = -p/Beo (1)

where p is the local charge density. Thus, at any time we can identify
vorticity with (minus) the charge density.

The Corcos model for the evolution to the "climax" state depends on the
reciprocal interaction of the vorticity and the fluid flow, with the vorticity
driving the flow through Amp~re's law, and being itself advected by the
flow through the continuity equation. The model proceeds as follows: as

the initially small-amplitude fields grow, they divide the fluid into free and
trapped flows, the trapped flows corresponding to the growing vortices.

Now, the Kelvin-Helmholtz instability grows by extracting vorticity from
the free-flowing shear layer. This vorticity is convected into the trapped
regions, where, once trapped, it becomes unavailable as a source of free-
energy. The convection of vorticity from free to trapped regions proceeds
in two steps; first, the vorticity, which is initially diffuse throughout the
shear layer, is concentrated by the large-amplitude flows into a narrow band
along the vortex separatrix; this band of vorticity is then advected into the
vortex core at a point roughly at the end of the separatrix (at the point of
maximum excursion into the shear layer), by a combination of stretching
and rolling of the stream-line defining the separatrix. Because the total
supply of vorticity is constant in this inviscid flow, the instability will cease
to grow when all of the vorticity has been extracted from the shear layer
and concentrated inside the vortices (because of the uncertainties of the
model, in fact it only requires that an an appreciable fraction of the total
vorticity be trapped).

Let Q,,, denote the net charge trapped inside the vortex, and Q0 the
initial, net charge in one wavelength of the Kelvin-Helmholtz instability.
Then, on account of Eq.(1), the climax condition for the saturation of the
individual vortices can also be expressed as:

Qvor ; Qo (2)

In other words. the vortex saturates when it has trapped most of the net
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charge resident in the shear layer. This occurs when the separatrix width
becomes comparable to the width of the shear layer, and is indeed what
is observed in Figs.(3). Another, semi-quantitative consequence of Corcos'
model is that the growth of the vortex should proceed at an algebraic rate
throughout the finite-amplitude part of its evolution, a feature which was
observed in the graphs of Figs.(6).

Let us now comment on the process of vortex coalescence, a process
which is also a generic feature of the hydrodynamic simulations, and which
immediately follows the climax of individual vortices. The vortices coalesce
as a result of a nonlinear instability, the so-called pairing instability first
derived by Lamb for point vortices[23, This instability has since then been
analysed for more realistic vortex configurations[24],

For a row of two-dimensional point-vortices, initially equally spaced at a
distance b, and each with net circulation r, f w, dxdy, one finds that the
arrangement is unstable, with a maximum linear growth rate corresponding
to a motion in which the vortices converge in pairs, the pairing instability.
The growth rate for this mode is[23]:

rvor

/PGsr = (3)

In Section 5.2, we shall see that for a shear layer of width b, with charac-
teristic velocity VO, the maximum linear growth rate scales as:

V0
"YL ' for AY - b (4)
b

where we have ignored all numerical factors. To compare Eqs.(3) and (4),
we note that the total circulation r0 in one wavelength of the initial shear

layer is:

0= bV (5)

Using Eqs.(3), (4) and (5), we find that:

ro

Now in Corcos' model, the vortices saturate precisely when F,.,/r 0  1.
This implies that as soon as the vortices saturate, the pairing- instabilit"v will
immediately set in, with a growth rate of order - t In agreentet
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with Figs.(3), this precludes a long-lived many-vortex state, at least in the

early phases of evolution, when the vortices are closely packed in a periodic
or near-periodic fashion.

4.6 Behavior when kl 0 0

We briefly explored the behavior of the sheath when kl $ 0. In our two-
dimensional simulations, this was done by tilting the magnetic field at a
finite angle to the z-axis. We considered a system half as large as in Run 1,
with L= 128 and with half the particle injection rate, but with otherwise
identical parameters.

In a first configuration, we tilted the magnetic field in the direction
of the y-axis, by setting B = (0, Bsina, Bcos a), with an angle a =
,(r,/rni)1/ = 4.53' . In this configuration the magnetic field remained
parallel to the wall, but allowed particle flow along the field lines in the
y direction, with a parallel velocity of order v11 - vt sin a, where v, is the
thermal velocity.

We expected important changes in the sheath dynamics to occur when
the electrons could flow at a parallel velocity comparable to their E x B
drift velocity. Since, as we shall see, the E x B velocities in the sheath
are of order VD -' Vt, we expected the transition to occur when v,11 - vti,
or at a "critical" angle a - (m,/mi)1/2. In fact, even the smaller an-
gle a = 1(Mn/M)1 12 was sufficient to greatly modify the course of the
simulation, by completely suppressing the formation of vortices and edge
turbulence. While the system generated a one-dimensional sheath almost
identical to the one-dimensional sheath generated in the early phases of
Run 1 (with potential drop eAk/T = -1.4), this one-dimensional sheath
remained absolutely stable in time, and did not induce particle transport
(most particles injected into the system remained confined). We suspect
that this stability is a consequence of the parallel electron motion, which
stabilizes the Kelvin-Helmholtz instability by short-circuiting potential per-
turbations which might arise in the shear layer.

In a second configuration, we tilted the magnetic field in the direction of
the x axis, thereby making the field lines impinge onto the walls. This was
done by setting B = (Bsin3,0, Bcos/3), with 0 = (Ma/M,)1/ 2 /8 = 1.130.
Despite the small value of the tilting angle, this configuration resulted in a
completely different type of sheath, in which the electron flow dominated
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the sheath dynamics. The wall took on a negative surface charge, and
the electrostatic potential now exhibited a rise going from the wall to the
plasma, of order eAO3/T - 0.3. Thus, in this configuration, the cross-field
sheath was suddenly made to ressemble the unmagnetized sheath, and we
can regard the introduction of the tilting angle 3 as a "singular" pertur-
bation. We did not perform a systematic study of the sheath with 3 0 0;
however we expect that it is well described by the work of Chodura[8].

The results of the two cases outlined above emphasize that the sheath
model that we are studying in this paper applies strictly to flute-like modes,
with a very small k1l. For our kll = 0 model to be appoximately valid when
k1l : 0, requires that in the characteristic time needed for the Kelvin-
Helmholtz instability to develop, the electrons sample only a fraction of a
parallel wavelength All = 27r/kll. This imposes the condition AI/te ' >Y'.H

where 'TKH is the growth-rate of the Kelvin-tHelmholtz instability. As we
shall see in Section 5.2, '- > 20w' (Fig.(12)). The result is the condition:

Ali> 20 (7)

or in terms of parallel wavenumber:

klp <- (8)
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5 Fluid Theory

In this section, we derive the fluid equations for the cross-field dynamics of
the electrons and ions. Our aim is twofold: in the present section we use the
cross-field equations in linearized form, and predict the initial growth rates
for the Kelvin-Helmholtz instability. In Section 6 we shall then consider
nonlinear solutions of these equations, and attempt to fit these solutions to
the final steady-state observed in Run 1. Our approach is similar to that
taken by several authors[16,25].

The cross-field equations are two coupled, nonlinear evolution equa-
tions, linking the electrostatic potential to the particle density. As we
shall see, there is a close analogy between these plasma equations and the
two-dimensional, inviscid Navier-Stokes equation[26]. This analogy was the
basis for the discussion of Section 4.5, in which we compared the evolution
of the plasma simulation to that of hydrodynamic simulations.

Following a general derivation of the fluid equations, we derive the lin-
earized form of the cross-field equations, assuming that the equilibrium
conditions at the edge are known. To determine these equilibrium condi-
tions, we fit analytic (tanh(x)) profiles to the initial velocity and density
profiles measured in Run 1. We then solve numerically the linearized fluid
equations, and obtain estimates for the growth rates and frequencies, and
the eigenfunctions of the unstable Kelvin-Helmholtz modes. This linear
analysis, which assumes a nonuniform density profile and the presence of
a finite conducting boundary, is considerably more general than the usual
analysis of the Kelvin-Helmholtz instability[12], which is done for a constant
density profile and boundary conditions at infinity. The results of our linear
analysis are then compared to the numerical results of the two-dimensional
simulations, with the aim of confirming that the instabilities seen in the
simulations can indeed by ascribed to the Kelvin-Helmholtz instability of
the edge shear layer. We find reasonable agreement for the long-wavelength
modes, but a sharper cutoff for the shorter wavelength modes, indicating
strong finite-larmor-radius effects not accounted for in the fluid theory.

The fluid theory assumes that we are modelling low-frequency, long-
wavelength phenomena, with wIl < w,, and Ikl p, < 1. Fortunately. inspec-
tion of the self-consistent simulation results shows that these conditions are
indeed approximately satisfied. Fig.(7) showed that the dominant Fourier
modes were those with Ikui p, < 1, and an examination of the power spec-

31

a, - "j' . ~ , - ° ,% " % % """"' ' "."'""" . . -"." . " "." . . -" . ' " " "



, tra P(w, kt) (Fig.(20), to be discussed in Section 6.5) shows that for the
long-wavelength modes, power is concentrated at frequencies IwI < wc,

As an aside, we note that the dominance of low-frequency, long-wavelength
modes over short-wavelength, high-frequency fluctuations can be readily
seen in a computer animation of the potential surface O(x, y, t), which we
generated from data produced in a simulation with parameters similar to
those of Run 1[5].

Thus, the fluid theory correctly describes the dominant, long-wavelength.
low-frequency features of the cross-field dynamics (the linear instability, the
formation of vortices, vortex coalescence and vortex structure), but will not
account for the small-amplitude, fluctuating behavior of the fields at short
wavelengths, kypi _ 1. Presumably, the short-wavelength phenomena are
correctly described only by the full kinetic equations, the solution of Which

is a topic for future research.

5.1 The Nonlinear Cross-Field Equations

Our derivation is similar to the one presented by Horton et ali161. In the
regime , < w,,, we simplify the electron and ion momentum equations by
approximating the electron motion by the E x B drift, and the ion motion
by the E x B and polarization drifts:

v= (E x =v (9)

1 1d
Vi =-(E x )+ , VE + Vp (10)

B Bwc, dt
In Eq.(10), d/dt is the total derivative,

d a
dt - + v (11)

at
With the electron and ion flows given by Eqs.(9.10), the densities must
satisfy the continuity equations:

_n,+ V .(vfn) = 0 (12)

at
-9ln, + "'((VE + vp),) = 0 (13)at
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Subtracting Eq.(12) from Eq.(13), we obtain a transport ejuation for the
net charge separation:

a
_(fl- n,)+ (VE(f(f- n,)+ vpf,) = 0 (14)

Using V .VE  0, Eq.(14) can be written:
. %

-d(n, -n)+1V. nE 0 (15)
dt Bw, 'dt

If we now use Poisson's equation:

e
2, e -- (n, - n,) (16)

and substitute for ni - n, in Eq.(15), we obtain a single equation tying
the electrostatic potential to the ion density. To this equation, we append
the electron continuity equation (12). Using the quasineutrality condition.
n, z ni - n, we obtain the coupled nonlinear equations:

m t _0d 2 + V n =0 (17)
e 2  dt dt

d-n =o (18)

This set of equations is similar to the cross-field equations of Horton et
al.[27], differing by the addition of the first term in Eq.(17), which allows
for a finite value of w,/wp,. Eqs.(17,18) have some simpler limiting forms.
If 2 >L 2 then we can neglect the first term in Eq.(17) and obtain:

V. nd-V =0 (19)

d
-n =0 (20)dl

If we further assume that n is everywhere constant, so that the transport
equation (20) is trivially satisfied, we obtain a single nonlinear equation for
0:
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(9 + 1 X0 (21)
Eq.(21) is identical to the two-dimensional Navier-Stokes equation, with
stream-function 0. We note that to derive Eq.(21) from Eq.(17) does not
require the assumption of w2 >~ U;2 but only that of constant density. Fi-
nally, if .F" < w, Eq.(17) once again implies Eq.(21), this time irrespective
of any assumptions on the behavior of the density profile. Thus Eqs.(17.18)
are close in nature to the two-dimensional Navier-Stokes equation, Eq.(21),
in a manner that is not very sensitive to the value of,,2 / 2

5.2 Growth-Rates of the Kelvin-Helmholtz Instabil-
ity

We shall now estimate the growth rates predicted by Eqs.(17,18) in the
presence of specified zero-order velocity and density profiles. In what fol-
lows. we did not use the exact, numerical profiles obtained in un 1. but
rather, we fitted approximate analytic forms to these profiles: this proce-
dure leads to a fully analytic treatment of the instability, and avoids the
problems associated with finite noise in the numerical results.

In Fig.(8), we show a snapshot of the "exact", zero-order profiles as they
were obtained from the self-consistent, two-dimensional calculation of Run
1 The snapshot is taken at an early time in the evolution of the system,
,t = 15, at which time the ,heath is still uniform in y. To predict the

growth rates, we model these numerical velocity and density profiles by
analytic expressions of the form:

tO(X) = i'0(X) (22)
n0(x) = N0 ho(x) (23)

where we have defined 'vo(x) = 'o(x). In Eqs.(22.23) lo and NO are con-
venient reference velocities and densities. We have chosen the functional
dependences:

1o(x) tanh(rx/a - 1)- 1 (24)
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ho(x) = tanh(x/d) (25)

With Eqs.(22-25), the equilibrium density far from the wall is given by No,

the drift velocity at the wall is given by -(1 + tanh(1)) = -1.761V 3 , d is

the scale length for the density gradient, and finally, a locates the position
of the inflection point in the velocity profile (p'(a) H 0). Fitting to the

simulation curves of Fig.(8), we find the values (in the units of ES2):

Vo = 0.0812 a = 4.0 (26)

d = 8.0 w ,/ .(n =No) =0.73 (27)

or, in physical parameters:

l/vt, = 0.514 a/pi = 0.63 (28)

dip, = 1.26 (29)

The analytic profiles which result from this choice of parameters are shown
in Fig.(9). It is convenient do introduce the parameter a, defined as:

2
or C (30)

= n 0 ) (30

Let us now linearize Eqs.(17,18), with the equilibrium given by Eqs.(22,23).
Writing o = oo(x) + 01(x, y,t) and n = no(x) + n(x,y,t), we find after
some algebra:

+ tO0() (V720 + "0'(X)
a0 + 0(x) Ox

(,, + ( V, (X) 610(1
- + v0(x) -h =0 (31)

In this equation, we have not yet factored-out Vo from '0(x). A simplifi-

cation occurs in deriving Eq.(31), in that nj does not appear in Eq.(17).
Thus, to first order Eqs.(17) and (18) are decoupled, and one need linearize

Only Eq.(17) to obtain a single equation for 0l, as we have done in (31).
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Figure 8: Velocity and density profiles for Run 1, at w, t = 15; (a.) y-
averaged velocity V,(.x) = vo(x) and charge-densityv profiles (full and dashed
lines respectively); note that the minimum of fi(x), at x = a, determnes
the inflection point D" = 0; (b) density profiles for electrons and ions; the
zero-order density in Eq.(23) is no(x) -- h(x), and d is the scale length in
Eq.(25).
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Figure 9: Shapes of the analytic velocity and density profiles used in pre-
dicting the growth-rates of the Kelvin-Helmholtz instability.

A rather lengthy eigenvalue equation is obtained by assuming an exp(i(kvy-
,wt)) dependence for the normal modes:

-,2  h€(+) a o'() -N ; ,V 2 o
aX2 a + 0o(x)Oz 0 w - kvo(x) + +) h() k ) =0

(32)

Eq.(32) can be made to appear more familiar, if we realize that for a con-
stant density profile, h (x) = 0, or in the limit of low peak densities, a --+ c ,
Eq.(32) reduces to the well-known Rayleigh stability equation[28,29]. The
new terms in Eq.(32) are those proportional to the density gradient h(x).

We now consider the numerical solution of Eq.(32), for arbitrary density

profiles. To find the frequencies and growth rates of the unstable modes,
it is convenient to solve Eq.(32) not as an eigenvalue problem, but directly
in the time-dependent form (31), as an initial-value problem[15]. In this
approach, we introduce an intermediate quantity 01, defined as the term in

Eq.(31) that is operated upon by the convective derivative (O + 0(x)0v).
Eq.(31) is then re-written as a coupled system:
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+ ikVobo(x)) 'i Y owV~ + a + ior) VO,9 h) ( )++ = i).o(v))+ (33)

5X2 0, + jj¢)a 1 (34) :

Eqs.(33) describes the convection of 01, which is driven by a source term
proportional to 01. Eq.(34) describes the reaction of 0'i on €1, which occurs

via a modified Poisson's equation. In the limit of a constant density, 01 is
simply proportional to the linearized charge density, and Eqs.(33.34) have
a clear physical interpretation, the transport of charge and its subsequent,
modification of the potential, which is somewhat obscured by the presence
of the density-gradient dependent terms.

We solve Eqs.(33,34) for the unstable modes with the largest growth-
rates by integrating numerically from random-noise initial conditions; we
then measure the growth-rate of the mode which emerges out of the noise.
The numerical method is straightforward; Eq.(33) is solved by a predictor-
corrector scheme, with €1 obtained from Eq.(34) through a tridiagonal ma-
trix solution. Throughout, we impose the conducting-wall boundary con-
dition, o1(x = 0) = 0, and a far-field condition 61(x = L) = 0, where
L > ad, The overall method is, of course, limited to determining the
eigenvalues of the unstable, fastest-growing modes; but this is all we re-
quire for comparison with the simulation results.

In Fig.(10) we show the results of our numerical integration of Eqs.(33,34)
with the parameters of Eqs.(26,27). We have plotted the the real and imag-
inary parts of the frequency w = WR + i- as functions of kya. From Eq.(32)
one can establish the general functional dependence of the eigenfrequencies:

V0w a 2(kyakyda) (35)
* a

where Q is obtained from a normalized form of Eq.(32), which depends only
on the dimensionless parameters kya, kd and a. Furthermore, the roots
occur in pairs such that Q(-ky) = -Q*(ky). Thus, for a given choice of
d/a and a, one needs to compute numerically the dependence of 2 on only
one free parameter, Ikyj a, and for only positive k!, a simplification which
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Figure 10: Growth-rates and frequencies for the Kelvin- Helmholtz instabil-
ity, with the equilibrium profiles of Eqs.(2t^-25); d/a =2, ao 0.73.

reduces the numerical work. Fig.(10) is established with the parameters of
Eqs.(26,27), with d/a = 2 and o, = 0.713.

* - The curve for the growth rate -y(k,) is shown in Fig.(10a). Its shape

is roughly parabolic, with cutoffs at k ~a = 0 and ky a = 0.9, and predictsI
a maximum growth rate of y = 0.099Vo/a, which occurs at k~ a =0.43.
The curve for the real part of the frequency is plotted in Fig.(10b). This
figure shows that the dispersion relation is approximated by the linear re-
lation WR(ky) = -kyV 0 . This result is not surprising: the unstable Kelvin-
Helmholtz modes can be thought of as resulting from the interaction of
two counter-streamning surface waves, moving symmetrically with respect
to the drift velocity at the inflection point in the velocity profile[11]. In
the frame co-moving with the inflection point, the interaction leads to an

almost purely-growing mode. Now, with the profile of Eq.(24), the velocity
of the inflexion point is precisely -11'0 and this results, in the lab frame.
in the linear dlispersion relation noted above. The fastest-growing mode is
indeed exactly purely-growing in the co-moving frame, and results in the
real frequency wjR = -0.43'/a

In Fig.(11) we plot the eigenfunction ol(x) corresponding to the max-I

imium growth rate. In this plot, we can see that while the peak of the
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mode of Eqo(32).

eigenfunction occurs at x = 1 5a, that is, right at the edge of the shear
layer, the eigenfunction also embodies a long exponential tail which pene-
trates deep into the plasma, up to a distance x - 10a.

In Figs.(12), we have reproduced Figs.(10), but have normalized all
variables to the physical parameters. Note that the fluid results do not in-
corporate any finite-gyro-radius effects, despite what niught be inferred from
the presence of the kp, term. In Figs.(12), we have also plotted the data, for
the growth rates and the real parts of the frequencies as directly obtained
from Run 1. The comparison shows that the analytic predictions for the
real part of the frequency agree reasonably well with the simulation results.
On the other hand, while the growth-rates for the long-wavelength modes

(m = 1,2) are in good agreement, fluid and simulation results diverge as
we go to the shorter wavelengths (m = 3,4, 5,6): while the fluid model
predicts in this case a cutoff at kypi = 1.4, the simulation results exhibit
a lower cutoff, at kyp i = 0.9, with a smaller maximum growth rate. Let

" YF(ky) denotes the growth-rate predicted by the fluid theory, and ,v(ky)
the numerical result of Run 1. We have found the approximate, empirical
relation:
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"tYN(k) -YF(ky) - 0.1 w¢, (Oflyp) (36)

It is reasonable to think that the "correction" term in Eq.(36) accounts for

finite-larmor radius effects not present in the fluid theory, and we can qual-

itatively account for the quadratic dependence of this term by the following

derivation. We first naively a(ld the orbit-averaged contribution:

VFLR = A Ei ()

to the ion velocity in the continuity equation, Eq.(13). This yields, in the

limit where the Navier-Stokes equation is valid, the following equation:

_70€ . f___[O', 710] _- lW, P2V74d 0 (38)

In other words, there is now a diffusive term in the vorticity equation. This

term leads to an additional damping v which has the dependence:
2 2

v)p (30)

and we note that the quadratic dependence of this term is at least compat-
ible with that of the correction term in Eq.(36).
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Figure 12: Comparison of the analytic results for the Kelvin-Helmholtz
instability with the simualtion results of Run 1; (a) growth rates; (b) fre-
quencies.

6 Steady-State Structure of the Sheath

In the previous sections we discussed the transient behavior of the sheath;
we shall now examine its steady-state structure. We shall first present the
numerical results of Run 1, and discuss the structure of the fields and of the
particle densities. Ve shall then make a connection with the fluid theory
of Section 5, by fitting a solution of the fluid equations to the observed
potential structures. The aim of this procedure is to make explicit the
fluid nature of the vortices. Ve shall close this section with a discussion of
the power spectra, which, in particular, provide information on the short-
wavelength turbulence which complements the long-wavelength vortices.

6.1 Simulation Results
As we saw in Figs.(4), after w, 1t z: 500 the sheath settles into a steady-state,

in which a single large vortex uniformly drifts along the wall. This large
vortex is occasionally accompanied by smaller "satellites", which reside in
the system for intervals of order wT - 100. The average drift velocity
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voy of the principal vortex can be computed from the slopes of the tracks
in Fig.(4) and was found to be essentially constant. At wit = 700, it was
found to be Ivoy /vtj = 0.44 (or voy = -0.065 in the units of ES2).

A three-dimensional perspective plot of the electrostatic potential O(x, y)
at w.,t = 700 is shown in Fig.(13). This figure clearly shows that the vortex
produces a very sizeable perturbation of the edge potentials. In Figs.(14)
we display more detailed information on the potential of Fig.(13), in the
form of a contour plot and cross-sectional plots. The maximum poten-
tial drop in the vortex center, relative to the y-averaged potential profile
(Fig.(14c)), is found to be ebo/T = -2.4, while the total drop of the y-
averaged potential, from the wall into the plasma, is eAO/T = -1.9. The
dimensions of the separatrix of the vortex can be measured from Fig.(14a)
and are found to be 1, - 96 (ly/pi , 15), and l, t 32 (1,/p, ; 5). Thus, if
defined by its separatrix, the vortex has the shape of an ellipse elongated in
the y-direction (this shape is distorted by the choice of scales in Fig.(14a)).
However, the funnel of the vortex flares out more rapidly in the y-direction.
and when considered say, half-way down the potential well, the shape of
the vortex is more nearly circular.

In Fig.(14d) we have shown the y-averaged, x-directed electric field
E.(z), which induceF the drift vy(x) = -E.(z)/Bo. Fig.(14d) shows that
the y-averaged velocity profile remains strongly sheared, even in the steady-
state. At the wall, the drift velocity is vy(O)/v,, = 1.25, or roughly the
ion thermal speed. The shear layer extends to about three ion gyro-radii
inward, to z ,t 20.

In Fig.(15), we show the profiles of the y-averaged particle densities.
i,(x) and i(x). There is a region of large charge separation, in which
T(z) > hi(x), extending to z ; 20; this region corresponds to the electric
field shown in Fig.(14d), and can be said to define the width of the y-
averaged sheath. Beyond this region, for 20 < x < 32, there is a narrow
quasineutral region, in which h,(Z) _ Fz(x).

In Figs.(16a,b), we have displayed the "scatter plots" of the particle
positions at wei = 700. A striking feature of these scatter plots is the
existence of a large region on the underside of the vortex, which is al-
most evacuated of particles. Ve shall discuss this feature in Section 7.
in connection with our discussion of particle transport. Cross-sections of
the local (unaveraged) electron and ion densities at .',t 700 are shown
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Figure 13: Perspective plot of the potential surface O(x, y) at wt = 700,
Run 1. In this figure, the potential well of the vortex is drifting "south-
easterly" from left to right.
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Figure 14: Details of the potential structure of Fig.(13), ,,, 700, Run
1; (a) contour plot of O(x, y); (b) y cross-section of Fig.(a) along xr = 15,
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Figure 15: Profiles of the y-averaged electron and ion densities at W,,t=
700, Run 1.

in Figs.(16c,d), onto which we have superposed the potential profile of
Fig.(14b). Let us note the presence of a large electron density at the core
of the vortex (Fig.(16c)). As can be seen, there is no corresponding peak
in the ion density (Fig.(16d)). A large, net negative charge at the center
is of coturse necessary to support the large potential drop in the vortex;
Figs.(16c,d) provide the additional information that this charge is provided
almost entirely by trapped electrons.

In Figs.(17) we look at the structure of the vortex at w,t = 700,
in a reference frame cn'-movzng with the vortex, at a (negative) velocity
V0 = -0.065. The potential as seen in this reference frame is found by
adding to the potential in the lab frame a linear potential 0,(x) = -coBox,
corresponding to the electric field induced by the uniform motion across
the background magnetic field. Fig.(17c) shows that E., has an approxi-
mately linear dependence along the x-section of the vortex, with maxima
E../Bo - ±l.5vt,. The field component EY, when measured along the y-
section of the vortex, is perhaps better approximated by a cosine, with
maxima Ev/Bo -- 0.6vti. These values of the fields give us an estimate of
the circulation time or "bounce time" of a particle around the potential
well of the vortex. Estimating the circumference of the vortex as beingy
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Figure 16: Distribution of particles at w,t =700, Run 1; (a) electron

a scatter plot; (b) ion scatter plot; (c) y cross-section of the electron density

fe(x, y) along x = 15, passing through the vortex center, with eo(, y)/T
superimposed (dashed line); (d) identical to (c), but for the ion density
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.

2 x (l/2) , 15pi (we are estimating the circumference half-way down the
potential well), and taking the mean drift velocity to be Vd 0. 6 vti, we
find that particles will have a bounce period TB given by wCTB ,_ 25. This
indicates that the bounce frequency wB1 of the electrons is of order:

WBI = 0.25 wj (40)

where the estimate is for electrons roughly half-way up the potential well
of the vortex.

6.2 Dependence of the Sheath Thickness on System
Size

In Run 1, the vortex grew so as to occupy the entire width in x of the
simulation region, and the nonneutral sheath also extended across the en-
tire region (Fig.(15)). Thus, the question arises whether the sheath has
a "natural", self-limiting width in x, or whether it can grow indefinitely,
provided the system is large enough to accomodate it. To answer this ques-
tion, we ran a simulation in which L. was 2.5 times larger than in Run 1

N"

In Figs.(18) we show the results of this simulation, otherwise identical to
Run 1, but with Lw/pi = 13, Lu/pi = 20, and an injection rate s = 2.51.
Figs.(18) clearly show that in the larger system, the sheath remains local-
ized near the wall. The vortex is seen to extend out to a distance l , , 5pi,
beyond which the fields are nonzero, but rapidly decreasing. In Fig.(18c) we
have shown the y-averaged electric field E.(x). This figure shows that the
shear layer is more localized than the vortex fields, a characteristic which
was already illustrated in Fig.(11), where we saw that the eigenfunctions of
the Kelvin-Helmholtz instability extend well beyond the region of nonzero
shear. In Fig.(18d) we show the profiles of the steady-state electron and
ion densities. This plot shows that in agreement with Fig.(18c), the region
of charge nonneutrality is confined to the edge layer, 0 < x < 5pi. Beyond
this edge region stretches a quasineutral plasma, which has a density profile
that is roughly parabolic.
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Figure 17: Cross-sections of the fields at wit= 700, Run 1, in a frame

co-moving with the vortex at a velocity v,= -0.44vi.
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6.3 Localized Solutions for the Steady-State Vortex

The characteristics of the dominant vortex in the final steady state were
illustrated in Figs.(14). We are now faced with the problem of providing an
analytic solution for the vortex potential, consistent with the simulation re-
sults and with the cross-field equations (17,18). Our discussion will remain
qualitative; in particular we shall assume that in our situation the Navier-
Stokes equation (21) is an acceptable approximation to the full cross-field
equations (17,18). This is equivalent to assuming that the effect of den-
sity variations can be ignored, by taking n ; constant. While there are
in fact strong density variations in the sheath (Fig.(16)), we are adopting
this assumption because it greatly simplifies our quest for solutions of the
cross-field equations: the literature on the Navier-Stokes equation is large,
and many analytical solutions are available.

The solutions of the Navier-Stokes equation which are available in the
literature are essentially of two types: the first type consists of local-
ized, soliton-like solutions ("modons")[30]; the second of periodic solutions,
formed with trains of nonlinear waves. We shall examine these in turn.

The extent of the vortex of Fig.(14a) is small compared the system
length L., and this suggests that we find a localized solution of the Navier-
Stokes equation to fit to the observed vortex structure. This is the approach
adopted by Horton et al.[16], who derive a solution for the asymptotic state

of a symmetric shear layer, using a matching technique first used by Sagdeev
et al.[251. However, we have not had much success with this approach: this
is because the resulting analytic solutions simply do not reproduce the
large-amplitude vortex seen in our simulations. Below, we shall first review
the method of Sagdeev et al.[25]. We shall then argue that a more general
class of solutions than the ones used by Horton et al. must be considered,
if we are to approximate the steady-state vortex of the sheath. We shall

finally describe a simpler, periodic solution (Stuart's solution), which at
least provides a rough fit to the observed vortex parameters, leaving to
future research a more detailed exploration of analytic solutions for the
asymptotic states.

We now review the general procedure for obtaining localized solutions
of the Navier-Stokes equation[31]. The first step is to assume a structure
stationary in a reference frame moving with constant velocity vy = u. To
make the contact with Section 6.1, we writ, u = -v0, where -v 0 is the
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drift velocity of the vortex as seen in the simulations. Then, defining the
transformed potential i, through:

O(x,y,t) = -v 0 x + O(X,y + vot) (41)

we find that Eq.(21) reduces to the stationary form:

[V,, V20] = 0 (42)

where the Poisson brackets denote the operator [f, g] f - yfag-g
[271. To solve Eq.(42), one can then select a class of solutions for which:

- f(g,) (43)

where f(O) is a given function of t,. If anything, Eq.(43) suffers from
too much latitude in the possible choices of the function f(,i,), which is
essentially arbitrary in the form given above. To reduce the undeterminacy
of Eq.(43), one can proceed by imposing additional constraints. The first
simplification is to assume that f(V)) is linear, in the form:

f (V,) = d + cO (44)

where d and c are constants. This has the advantage of leading to an
equation which is analytically solvable. The second constraint is to assume
(43) valid only in a restricted region of the plane, say in a circle of radius
r = a, and require that the solutions of (43) match to a prescribed lani-
nar flow outside the region. Because of these constraints, many, if not all
of the arbitrary constants in the solution of the interior region are then
determined.

We have applied the method outlined in the preceeding paragraph in two
ways. In the first, we attempted to model the edge region by a monopolar

vortex, symmetric about the inflection point of the shear layer. In the
second, we attempted to fit a dipolar vortex[32] to the edge region, with
the wall as symmetry plane between the two vortices in the dipole, and
with one of the vortices a virtual image of the other one, resident in the
plasma. In each case, the interior region of the vortex was modelled by
Eq.(44) with d = 0 and c = -k 2 , resulting in the Helmholtz equation:

V 2 + k 20= 0 (45)
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The matching condition at the boundary between the vortex interior and
the unperturbed exterior flow then results in a "'modon dispersion relation"
for the internal wavevector k.

These approaches unfortunately failed, in that the solutions predicted
vortices with small amplitudes, e j6(j/7T, < 1, in contradiction with the
observed e 1601 /, - 2. The weakness of the vortices obtained in the ana-
lvtic solutions was linked to our choice of the smallest root of the dispersion
relation for k, this choice leading to a flow which closely approximates the
external, unperturbed flow. By choosing the next, larger root, one does ob-
tain a large-amplitude vortex, with e 16I 6/1T - 0(1). However, this choice
also leads to strongly reversed flows[16], which do not ressemble the circular
flows seen in the simulation vortices.

We suspect that the failure of the method is tied to the choice of a
linear function for f(o), because such a choice does not produce solutions
which are sufficiently "self-binding". As an alternative, one might consider
an exponential dependence in the function f(0'), with the anasatz:

f (0) - a exp(b ,) (46)

For values of w of order unity, the exponential can provide the necessary
curvature in the solution to 0 so that within a localized region, ?4, can match
to some external flow.

We have not attempted to solve Eq.(43) with the exponential depen-
dence f(w,) -,- aexp(bvp) for a strictly localized solution. Rather, we have
fallen back onto a periodic solution existing in the literature, which does
satisfy Poisson's equation with this form of f( ,). This is Stuart's solu-
tion which can be written:

= 0 log [cosh(kz) + A cos(ky)] (47)

In Eq.(47), the wavenumber k is adjustable and determines the periodicity
of the solution, with wavelength A = 27r/k. The parameter A is also ad-
justable, with A < 1, and determines the maximum depth of the potential
well. One can verify that the function 0 of Eq.(47) satisfies:

k72 = kvoexp(--2kw,/to) (48)

This corresponds to a charge density with a strong dependence on the
potential:
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Note that if we normalize x and ik in Eq.(48) according to - kx and

= ko/vo, then Eq.(48) reduces to the simple, general form:

V = exp(-2) (30)

While Stuart's solution is an exact stationary solution of the Navier-
Stokes equation, its choice is a rough physical guess insofar as it is not
the exact consequence of the time-dependent problem. Keeping this spirit
of approximation in mind, we shall now determine the free parameters in
Stuart's solution by matching to the observed simulation results.

,,1

6.4 Periodic Solution for the Steady-State Vortex

Using Eq.(41), we transform the potential b of Eq.(47) back to the potential
in the stationary laboratory frame:

(x, y) = -vox + vlog (cosh(k(x - b)) + Acos(k(y - vot))) (51)
k

In this equation, we have also chosen a new line of symmetry in x, by
shifting the vortex centers to x = b. Note that Eq.(51) predicts v,(x) -- 0
for k(x - b) > 1, and very roughly v,(x = 0) ; -2vo at the wall. By

inspection of Fig.(14), we find that the vortex center lies at b = 16 (b/pi =
2.5). For the wavelength k, we have k = 27r/L u = 0.0245 (kp, = 0.133).
The vortex velocity v0 was already noted in Section 6.1, where it was found
to be vo/vti = 0.44.

To determine the remaining adjustable parameter A, we consider the
maximum depth of the potential well along the line of symmetry, x = b. In
physical units, this is:

ebk Vo/Vtilog _ 1 )= -- lo (52)
Ti kpi

or, solving Eq.(52):

A-1~~ kp, e66 (3
A --1 - exp o/ (53)
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With the values derived above and e I /T, 2.4, we find A z 0.57.
To summarize, we have found that Eq.(51) gives a rough estimate for the
steady-state vortex with the parameters:

vo/vt = 0.44 kpi = 0.155 (54)

b/pi = 2.5 A = 0.57 (55)

Let us examine some properties of Stuart's solution with these param-
eters. With k Ix - bI >> 1, Eq.(51) predicts the potential:

¢(X, y) -OX + v) log (cosh(k(x - b))) (56)

and hence the flow:

'9
Vaytc ) -O(x, y) = v0 (tanh(k(x - b))- 1) (57)

The analytic form of this flow is identical to that which we assumed for the
initial conditions of the linear stability analysis of Section 5.2:

vo,(x) - Vo(tanh(x/a - 1)- 1) (58)

provided we take V = v0 . However, the final value of k observed in the
simulation imposes a much broader scale length than the initial gradient
length a, as we have 1/k = 6.5p,, which is much larger than a = 0.4 pi.

From Eq.(51) we can obtain the total width in x of the separatrix. This is
given by:

;. 2
h = 2cosh-'(1 + 2A) (59)

k
We find that h ; 8,, which is somewhat larger than the observed vortex
diameter l, - 5p,. If we find this discrepancy disturbing, we should perhaps
instead link the vortex size not to the extent of its separatrix, but to the
scale-length of its y-averaged flow, which is somewhat sharper. Averaging
over the y coordinate at any fixed x, we find that:

=Y( V - V sinh(k(x - b)) (60)
(cosh2(k(x - b)) - A 2/2
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With A = 0.57, we find that ;,(x) achieves 3/4 of its maximum value at a
distance 1 = 1.3pi from the plane of symmetry. We shall now decree that
this is the new scale-length for the shear layer, _tad that the line of symmetry
has shifted in such a way as to accomodate it, by defining b l= 1 - 1.3pi.
For the parameters of Simulation 1, this yields b ; 8.1, which is close to
the observed value of the coordinate of the inflection point.

The value of A which we found above, A = 0.57, is comparable to
that found when one fits the model of Eq.(51) to the simulation results of
Corcos[20,21,22]. In a simulation of the Kelvin-Helmholtz instability, with
a tanh profile for the shear layer similar to the one above, Corcos initiallv
excited the mode with ka - 0.45. The saturated vortex which developped
from the initial perturbation was seen to have a separatrix width satisfying
kh = 10.0, which from Eq.(59) corresponds to A = 0.45

Finally, to measure the vorticity extracted by the instability from the
shear layer, we consider the circulation F = f wdzdy. The ratio of the total
circulation in the model vortex of Eq.(51) to the initial circulation r0 in a
wavelength 2n/k, is given by:

= tan- VA = 0.82 (61)IF0 7r

so that the simulation results, and the analytic model for the vortices.
are compatible with a situation in which most of the vorticity (and hence
most of the net charge density in the shear layer) resides within the vortex
separatrix.

6.5 Power Spectra

We shall now discuss the frequency and wavenumber dependence of the
power spectra. As in Section 4.3 we consider the transforms of the potential
O(x, y, t) at a fixed z, located in the midplane of the simulation region.
z = L_/2, but we now transform in time as well as in y. More precisely, for
each wavenumber ky, the power spectrum P(ky, w) is defined as the Fourier
transform in time of the autocorrelation function of the mode:

P(k, ) J. dr eiw < O(k,t) 0-(ky,t + r) > (62)
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In Eq.(62) the average < ... > is obtained by performing a time-average on
the simulation data from the time-interval 0 < wit < 1075. The resulting

autocorrelation function is also passed through a lag window[33], resulting
in a smoothed spectrum.

Let us first consider the total spectral energy for each Fourier mode
q(ky, t). This is simply:

< ',t)
2 >= 2-7 r P(k,w) (63)

In Fig.(19) we plot < 1 (ky, t)12 > and compare its values to < 1( (ky, t)12 >111

the distribution of energy in thermal equilibrium. The theoretical expres-
sion for the spectrum in thermal equilibrium is given by:

< I (kt)12 > T kDiLy (1 - (1 + (kyAD,)2) - 1/2) (64)

which is obtained from the fluctuation-dissipation theorem, assuming an
infinite, homogeneous plasma[34]. While Eq.(64) does not account for all
numerical discreteness effects, nor for the boundedness of the system, we
believe that it provides a qualitative estimate for the level of thermal fluctu-
ations. The first notable feature of Fig.(19) is that the spectrum is peaked
at low wavenumbers, and is strongly cutoff beyond kypi = 1, a feature
already observed in Fig.(7), where we showed a snapshot of modal ampli-
tudes. The second distinctive feature of Fig.(19) is that the values of the
power spectrum are quite larger than those of the thermal spectrum over a
large range of wavenumbers, up to kpi ; 3. This latter feature indicates
that despite their smaller amplitudes (as compared to the ec$/T i -- 1 vor-
tices), the short wavelength-modes are also collective plasma oscillations,
and cannot be assimilated with the thermal fluctuations.

We shall now consider the power spectra in more detail, as a function of
frequency w. In Figs.(20) we have plotted the spectra P(k,w,) for the first
7 wavenumbers (omitting ky = 0), covering the range 0.155 < kspi < 1.085.
A first feature of these figures is that in each graph, the spectrum peaks at
a different value of w, w = wp, suggesting a dispersion relation of the form
Wp = w(ky). Now, if the modes are simply static structures, carried along
at the vortex speed vV = -v 0 , then we should have the dispersion relation:

W= -kYVo (65)
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Figure 19: Power spectrum for Run 1, time-averaged over 0 < ,t < 1500
(full line). We have also plotted the estimated thermal spectrum (dashed
hne). All data is taken along the y cross-section at x = L,/2 = 16.

%5- In Fig.(21), we compare this dispersion relation to the values of wp(kv,): we
can see that the agreement is reasonably good. Let us note a second, quali-
tative feature of Fig.(21), which we believe reveals a fundamental aspect of
the edge turbulence: this is the progressive broadening of the spectra as we
move to larger kypi. While the modes with kp, < 1 have a spectrum which
is both narrow and confined to w < w,, the modes with kyp, - 1 have a
broad spectrum, with peak near wdi and with width j wl - w,. There is
also more structure in the short-wavelength modes, with the amplitude of
many sidebands comparable to that of the main peak.

These qualitative observations on the structure of the spectra suggest
that the edge fields can be partitioned into two physically distinct compo-
nents, which can be described as follows:

1. There is a "coherent" component of the fields, with lkyj p, < 1 and
I wl < w,, corresponding to the large and stable structures seen in
the plasma - the vortices. This component arises out of the inverse

"C" cascade of wavenumbers which occurs during the transient build-up
of the system.
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Figure 20: Power spectra in Run 1, time-averaged over 0 < L-',it < 1500,
for Fourier modes m = 1 to 4; aUl data is taken along the y cross-section at
x =L ,/2 =16 (continued on the next page).
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S60

I,

-S . . . .



V.5 WC1

.3
.5 /"

.2 /
/0

/.

0 .2 .4 .6 .6 1.0

Figure 21: Dispersion relation obtained from Figs.(20); the dashed line
denotes the linear dispersion relation Ijw = k. Ivol where v0 = -0.44vt, is
the vortex velocity.

2. There is also a "turbulent" component of the fields, with Ik.I pi 1
and Iwi - w,, corresponding to the small, short-lived fluctuations.
This component arises out of a forward cascade of wavenumbers,
which we shall qualitatively discuss in the next section.

The partition scheme outlined above is based on qualitative considera-

tions which we have adopted in the absence, on our part, of a more precise
theoretical understanding. In Section 7.5, we shall nonetheless use this
scheme to estimate diffusion coefficients, thereby obtaining at least semi-
quantitative results. We leave to future research the development of a more
quantitative understanding of the mechanisms underlying the edge turbu-
lence.

6.6 Source of the Short-Wavelength Fluctuations

What are the mechanisms underlying the partition of the edge turbulence
into a spectrum with a mixture of coherent and turbulent components? The
answer is related to that of general problems in two-dimensional turbulence.
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in particular to the organization of forward and inverse cascades of energy
in wave-number space Thus, we fear that a quantitative answer to the
question probably requires a range of investigation largely outside the scope
of the present paper. However, in keeping with the spirit of the analysis of
the previous sections, we shall at least suggest some mechanisms by which
the short wavelength, "turbulent" components can arise in the system.

Our point of view is that the quasi-stable vortex state observed in the
simulations can be regarded in a first approximation as a completely stable
steady-state of the form given by Eq.(51). The problem is then to predict
how short-wavelength (kypi ,- 1), high-frequency (w - w,,) fluctuations can
arise from such a nonlinear equilibrium state. The analysis is complicated
by at least two general factors. The first is that the equilibrium state is
itself a nontrivial, nonlinear solution to the cross-field equations, and, for
instance, linearizing about this state is a procedure greatly complicated
by the specific vortex geometry. The second factor of complication arises

because we are considering a regime for which the fluid equations are no
longer valid, and thus the full kinetic description is presumably necessary.
At the very least, an equation of the form of Eq.(38) (but with a rigorous
derivation of FLR effects to order (kp,) 2 ) will have to be considered.

Within the general context just outlined above, we shall be content to
suggest the following mechanisms for the excitation of the short-wavelength
fluctuations:

1. Instabilities in the shear layer outside of the vortex: As we saw in
Figs.(4), every now and then "satellite vortices" are generated at
some distance from the main vortex and subsist for a time period
Wit " 100. This suggests a continuous generation of small-wavelength
modes at some distance from the main vortex; presumably these
modes are then convected up and down the shear layer relative to
the main vortex, and eventually merge with it.

2. Instabilities inside the main vortex: In viscous hydrodynamics, large
eddies are rarely absolutely stable, and are seen to generate smaller
eddies through viscous shear. This suggests that we investigate the
stability of the vortex to radial eigenmodes with angular dependences
of the form em 0 . As we shall see in Section 7.1, the bounce frequency
of electrons at the bottom of the potential well of the vortex is of order
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WB 0 .5w,,. The excitation of modes at harmonics of this frequency
could account for the presence of the high frequency fluctuations.

3. Trapped-electron instabilities: The presence of trapped electrons in
the vortices suggests the possibility of sideband instabilities as studied
by Kruer and Dawson[35] in connection with large-amplitude plasma
waves.

4, General parametric instabilities: Rather than consider the stability
of a linearization around the vortex equilibrium, we can consider the

more general question of the stability of arbitrary three-wave pro-
cesses. In particular, there is the possibility of three-wave coupling
to the k 0 mode, a process analysed in connection with drift

waves [36]
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7 Transport

An essential feature of the dynamics of the cross-field sheath is the exis-

tence of an outward, ambipolar transport of particles. In the steady-state,
this transport is nearly constant in time, and equal to the net influx due
to pair creation. What is the driving mechanism of this transport? In the

previous section, we saw that the power spectrum could be roughly par-
titioned into two qualitatively different contributions: a long- wavelength,
"coherent" component, which is associated with the long-lived vortices; and

a short-wavelength "turbulent" component, associated with the short-lived

fluctuations which satisfy the condition Jkt,1pi - 1. To this spectrum, we

must add an overall thermal background, due to the excitation of waves by

the discrete particles. In the present section, we shall estimate the contri-
bution to transport from each of these components,

The "coherent" component of the fields is composed of the large, long-
lived vortices. Its representation is that of a uniformly drifting, constant-

amplitude vortex of the form:

€¢Oa(x, y, t)= (X, y - ut) (66)

where u =-v0 is the vortex drift-velocity. Let us consider the effect of
(66) on transport. First, because of the functional dependence of 4), we
can transform to a reference frame co-moving with the vortex, in which the
potential becomes strictly static. Thus, we need only consider the effect of
the time-independent potential -,D(x, y).

Let us first consider the effect of 4 (x, y) on the ion motion. On account
of their large gyro-radii, the ions would appear to be a priori the least

well-confined species. Furthermore, a potential such as (66) can in princi-

ple create outward transport, by moving the ions in intrinsically stochastic

orbits. This judgment is based on the observation that the ion gyroradius
is an appreciable fraction of the vortex size ( pill, - 1/5 ), suggesting

that the adiabaticity of the ion E x B drifts is destroyed in the presence
of the vortices, with stochastic motion as a result. Of course, a quantita-
tive analysis of such a transport mechanism requires rigorous Hamiltonian

methods. as for instance in [37]. However, we would like to argue that

such an analysis of ion transport is not immediately necessary. because,

without a coicninmutant outward electron flow, whatever outward ion flow
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might occur through intrinsic stochasticity is strictly self-limiting. This is
because, as the ions are driven to the wall, they build-up a positive charge
on its surface, which eventually forms an impassable potential barrier. It
is not hard to estimate that the required electric field for stoppiug almost
all ions is of order E,/Bo "- vtj (see Eq.(104)).

Now, for the electrons, there is almost no outward transport in the
presence of the potential 4D(x, y). If 1(x, y) is rigorously time-independent,
then the electron orbits will remain regular (because p, < lvotex). Through
their E x B motion the electrons will closely follow the equipotentials D(x, y)
at all times, and the great majority of electrons Will remain forever confined,
by being locked onto a given equipotential. The exception will be for those
electrons on equipotentials which come close to the wall, within a layer of
width P, within which the finite electron gyro-radius enables them to strike
the wall. However, this class of equipotentials defines a "scrape-off" layer
which is still very narrow compared to the system size, and whose existence
does not explain the outward transport of electrons which are at a distance
x > p, from the wall.

Thus, we must conclude that by itself, the "coherent" component of the
spectrum is unable to induce transport. Furthermore, the arguments given
above suggest that this situation is primarily due to the lack of electron mo-
bility. While it appears that the ions might have an intrinsic diffusion tied
to their stochastic orbits, the requirement of ambipolarity automatically
suppresses their ou' --rd transport, whenever the electrons themselves re-
mained confined. Thus. the electrons form a "bottleneck" in transport. In
what follows, we shall therefore concentrate on the electron diffusion as the
dominant transport mechanism, inducing loss of particles of both species:
we shall assume that the ions easily "follow the electrons", and that their
outward flux is simply equal to the independently determined electron flux.

The failure of the coherent part of the spectrum to induce transport
suggests that the turbulent component of the spectrum plays the central
role, by creating an effective collisionality. resulting in a diffusion. Because
of the short-wavelength nature of the fluctuations, we suspect that this
diffusion coefficient is of a local nature, resulting from scattering events
over a length scale of order pi or smaller. However. we should note that in
such a situation, the coherent spectrum might still have a sizeable effect.
This consideration arises because though the coherent spectrum does not
induce transport by itself. it might enhance this diffusion, by behaving as
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a convection cell. In this latter scenario, transport is enhanced because the
vortex can ferry particles from the interior to regions much closer to the
wall, on a time-scale shorter than the global diffusion time in the presence
of only the fluctuations.

An important question to be first decided is whether the dominant
source of transport is due to the turbulent collective modes, or whether
it is a consequence of collisional effects. We shall consider this question in
Section 7.4, where we show that the scaling of transport in the system is not
collisional. However, we shall first piesent some numerical measurements
of transport as obtained in Run 1.

7.1 Orbits of Test Particles

In ordei to gauge the rate of transport of particles across the system, we
set up a numerical experiment in which we followed the motion of a set

*of test particles, composed of five electrons and five ions which were ini-
tially placed at the bottom of the vortex. In Fig.(22a), we show the initial
particle positions at -Wdit = 1075. We followed the motion of the particles
over the time interval 1075 < --,it < 1575, the final positions being shown
in Fig.(22b). The test particles moved in response to the electric fields in
the simulation region, but were completely passive, in that they did not in
turn affect the fields through Poisson's equation. Thus, their presence did
not modify the dynanmics of the system. Furthermore, in order to follow
as closely as possible the guiding-center motion of the electrons, we intro-
duced an unphysical damping in the mover of the test electrons[38], which
suppressed gyro-motion, and retained only the guiding-center motion. As
we shall see, a consequence of this modification of the mover is that the
test electrons remain in the system much longer than the field electrons.
because they have to move closer to the wall to be scraped-off. A rough
indication of the better confinement of the test electrons can be seen in
Fig.(22b). which shows that while by ,,,t = 1575 most of the ions have
impacted into the wall, most of the electrons are still confined. Without
the damping of their gyro-motions, the test electrons are lost at the same
rate as the test ions.

In Figs.(23), we show the time histories of the x coordinates of the
five test electrons, with a blow-up of the motion of Electron 1 shown in
Fig.(24). The plots show that all electrons are initially trapped at the
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Figure 23: Histories of .re(t) for the five test electrons of Fig.(22) (labelled
p= 1, 2,...,5); 1075 < wt < 1373, Run 1.
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Figure 24: Enlargement of the time-history of xJ(t) for electron 1 of

Fig.(23); 1075 < wdt < 1325, Run 1.

bottom of the vortex, and remain trapped for a considerable number of
bounce oscillations. From Fig.(24), we can estimate the bounce frequency
of the electrons near the bottom of the vortex; it is found to be: 'a

WB2 = 0.5WL (67)

This estimate is to be compared with that of Eq.(40), WBI = 0.25wc,, in

which we evaluated WB from the measured values of the E x B drift inside
the vortex. As WBI was evaluated for a particle roughly half-way up the
potential well, it is not surprising that WB2 > WBI, indicating faster bounce
oscillations at the very bottom of the vortex.

Figs.(23) show that over many bounce oscillations, the electrons be-
come progressively untrapped, by migrating toward the separatrix of the
vortex. Thus, zx(t) exhibits larger vertical excursions as time progresses,
and the bounce oscillations slow down towards the end of the duration of
the trapped orbits. After reaching the separatrix, the electrons become un-
trapped, and then undergo several kinds of motion: for instance, Electron
1 begins to execute large excursions across the system, over a time-scale
wcit ". 100; Electron 2 is almost immediately driven to the wall; Electron 5
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Figs.(23); 1075 < w~t < 1325, Run 1.

first behaves as Electron 1 and displays large excursions across the system,
but is eventually retrapped by the vortex at w~ t 1450. Note that in
almost all cases, the electrons are driven within a distance p, of the wall,
and without the damping of their gyro-motion would have been scraped-off
from the plasma.

In Figs.(25) we show parametric plots of the electron position (x,(t), yeW).
* so as to give a general feeling for the electron motion. In these figures, one

can distinguish the trapped, oscillating orbits, from the relatively straight,
untrapped trajectories.

In Figs.(26), we show the motion of test Ion 1, by plotting the time
histories of x,(t), y3(t) and (x,(t), y,(t)). Though the ion is initially trapped

* in the vortex, as can be seen in Fig.(26a), its motion when trapped is less
distinctive than for the electrons. Thus, in Fig.( 2Cc) we do not see the great

- loops that were seen in Figs.(24). This is because the large gyro-orbit of the
* ion blurs the motion of the guiding-center, and also, presumably destroys

its exact E x B drift. A distinctive feature of Fig.(26c) is the repeated
repulsion of the ion by the strong electric field in the sheath; this is seen as

a a set of almost point-like reflections of the ion orbit.

While Figs.(23) will provide us in Section 7.3 with an estimate of the
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average global diffusion time, they do not indicate in which specific regions
transport is greatest. We can, however, obtain an indication of this from
the scatter plots of Figs.(16). A striking feature of these scatter plots is
the existence of a large region on the underside of the vortex, which is
almost evacuated of particles, and which lies along the vortex separatrix.
We believe that the evacuated regions in Figs.(16) are formed when parti-

cles which are E x B drifting counter-clockwise around the vortex impact
into the wall, at a point at the level of the vortex center. The result is
a depletion of the region on the underside of the vortex: thus, the evac-
uated regions can be considered to be the "wake" inside the plasma, of
the scrape-off of particles right at the wall. Not surprisingly, the existence
of the evacuated regions indicates that particle orbits are most unstable
on the separatrix, a generic feature of dynamical systems[39]. This is also
qualitatively confirmed in Figs.(23): we can see that an electron moving
right on the separatrix will have, at intervals of a bounce period, many
opportunities for grazing the wall (this is particularly clear for Electron 3).

7.2 Dynamics without Electron Gyromotion

The results of the previous section, in which we saw that by itself, the E x B
motion of the test electrons can lead to diffusion and loss of confinement,
suggested that we run a simulation in which the gyro-motion of all electrons
was suppressed, so as to demonstrate that only the E x B motion of the
electrons is important. This notion is certainly reasonable, in view of the
low-frequency nature of the spectra shown in Figs.(20), in which the spectra
were confined to frequencies Iwl < w.

To run a simulation with suppressed gyromotion, and yet maintain a
steady-state loss of electrons to the wall, we had to re-introduce an effect
of the finite gyroradius by creating an artificial scrape-off layer, defined
by requiring that all electrons within a fixed distance x < P, be immedi-
ately absorbed by the wall. With this modification, we ran a simulation
of a system half as long as in Run 1, with L, = 128 and half the in-
jection rate, but with otherwise identical parameters. The results were
qualitatively very similar to those of Run 1, with the system establishing
large-amplitude, steady-state vortices (e I l IT, - 2), and with a transport
which maintained the particle densities at values very close to those in Run
1 (ne,i 2.1 peak densities, with similar density profiles). The structure of
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the shear layer was also very similar to that found in Run 1.
These results indicate that E x B motion dominates the electron dy-

namics, and suggest that future simulation studies incorporate an electron
mover which entirely ignores the gyromotion and follows only the E x B
motion of the guiding centers. This modification should result in a con-
siderable reduction in the computation times (in the simulation above, we
merely damped the gyromotion, and were still limited by constraints of the
explicit time step).

7.3 Numerical Estimates of the Diffusion Coefficient

We shall now estimate the diffusion coefficient using several different mea-

sures of transport. Our approach is qualitative, and aims for an estimate
of the average diffusion rate across the system.

From Figs.(23), we can estimate a characteristic, "diffusive" time rdiff
for the diffusion of an electron inside the vortex. We define rdilf as the
time required for an electron to migrate to the separatrix. Averaging over
the five test electrons, we find:

Wcidff = 215 (68)

Note that this is the time for the diffusion of an electron across the vortex
radius, or a distance roughly L,/2. We can now compare rdi1 f to a global
"confinement time" T,,, where we define r,,, to be the average time any
one electron spends in the system. Thus, in the steady-state, where rate
of creation equals outward flux, we must have s = Ne/To85 , where s is the
electron-ion pair creation rate, and N, the total number of electrons. With
the known steady-state values N, = 16400 and s = 1.005, we immediately
find:

= 410 (69)

Thus, we find that ToI0 is comparable to Tdilf, but somewhat greater, with
Tiooo/Tdfif = 1.9. This disparity is not surprising, insofar as 7T,, accounts
for the migration of particles across the entire system, while Tdiff was an
estimate for their diffusion across roughly half the distance (and only in
the well of the vortex).
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From the diffusion time given in Eq.(68), we can in turn estimate the

diffusion coefficient. Since rd, fi is the time for diffusion across a distance

L=r/2, we have the estimate:

Ddif f (L./2 )
2

-- - 0.015 (70)
2*Tditt f-

where the superscript indicates an estimate based on test-particle diffusion. "

How does the value given above compare to the Bohm diffusion coefficient?
The latter coefficient is given by:

D1 = a-- a !Ll T 2.

where a - 1/16[40]. With the values given in Table 1,. we find that D.
"0.0625, so that D dif f ID s B : 1/4.
SWe can independently estimate the diffusion coefficient by requiringe

:' that the solution of the diffusion equation be compatible with the observed
density profile. The diffusion equation is given by:

On(x, t) = D.-r-a2 n(x, t) + o, 72)

57x-2

wher- oa = s/L.,Ly is the distributed source term and n(ax, t) the y-averaged
particle density. We solve Eq.(72) in the steady-state (On/tr = 0), with

fboundary conditions n(c = 0) = 0 and tn(x = Lf)/uion 0. The resulting
wsolution is the parabolic profile:

n(D ) = (2LL/ - x) (73)

Withe the persit in tn esthe simulation (n(s) c, 2.4 at ut.
700, see Fig.(15)), we find the diffusion coefficient:

-- 0.026 (74)
2n(n.,)

where the superscript indicates that D den is derived from the density pro-

file. The rough agreement between the estimates of Eqs.(70) and (74)

indicates that our calculations ae consistent. The result Dde th > D dif f

suggests that particles injected at random in the system diffuse outward
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faster than those injected right in the center of the vortex, but that the
disparity in diffusion times in not very large.

7.4 Estimate of Discrete-Particle Effects

We shall now gauge the importance of collisional effects in the cross-field
transport.

Like real particles, the numerical particles undergo scattering and diffu-
sion from two sources of discrete-particle interactions: short-range binary
collisions, and transport by long-wavelength, thermal fluctuations. In our
range of parameters, it can be estimated that the E x B motion induced
by the thermal background is the dominant contribution to the electron
diffusion[41] (this is because pe < Ad,). The resulting two-dimensional
diffusion coefficient is, in physical units[42,41]:

/ .,) 2 -1/2
- (T/eB) + +w/wl) log(k,,,,L/27r) (75)D~ 3(nA2)1/2 +Wp/c

In Eq.(75), the numerical value of the constant 3 remains uncertain. The
factor 03 is a constant which accounts for precise definitions of correlation
times, and for numerical smoothing effects, factors which are not accurately
determined in the analytic derivation of Eq.(75). The essential feature of
Eq.(75) is, however, the strong dependence of the collisional diffusion coef-
ficient on nA'. If the transport in Run 1 is mostly collisional, then changing
the plasma "graininess" parameter nA2, while keeping the other plasma pa-
rameters fixed, should result in strong changes in the diffusion coefficient,
and hence in markedly different steady-state conditions: thus, we have a
test for determining whether the transport predominantly collisional.

With the steady-state parameters of Run 1, wpi/w;i = 1.2, T/eB = 1,
and a numerically imposed km,= = 0.23r/Ay, we find the estimate for the
collisional diffusion coefficient:

2.243 (76)

n A

where we have left nA2 a variable parameter. In order to test the applicabil-
ity of Eq.(76), we performed a series of simulations in which wt varied nA,2
but kept wce and wu~i fixed, and in which in we also kept the same creation

.7



5,,

p.

of charge per unit time from one simulation to the next. This was done by
changing the electric charge and mass per numerical particle (which were
made bigger to decrease nA'), while keeping e/me, m,/m, and the rate of
injection of charge e x s = (Charge per particle) x (Rate of pair creation)
fixed. In each simulation, we determined the diffusion coefficient from
Eq.(74):

D num=D 2n(L.) (77)

where n(L,) is the central, y-averaged steady-state density. The results are
shown in Fig.(27) (Run 1 corresponds to Vn d = 7,5). In Fig.(27), it can
be seen that the observed diffusion coefficient does not have the collisional
dependence implied by Eq.(76). In fact, despite strong variations in nA ,
we obtained steady-states with very similar final density profiles and very
similar values of the density-dependent parameters wp, and wi,,. Only at the
smallest value of nA , nA = 4, do we begin to see indications of enhanced
diffusion. The vortex structures also remained qualitatively the same, but
became noisier at the smaller values of the plasma parameter. These results
lead us to believe that collisional effects are not the dominant transport
mechanism in our simulations.

7.5 Analytic Estimate of the Diffusion Coefficient

In the previous sections we have argued that the large vortices cannot
account uirectly for transport in the system, and that this transport does
not scale as would be expected from collisional effects. These results suggest
that the turbulent component of the edge spectrum is the main source of
transport, and, in this section, we shall estimate its contribution to the
diffusion coefficient.

We shall make several simplifying assumptions. We assume that in the
steady-state the sheath organizes itself so as to have a thickness 1.,, and
that the vortices have an average spacing in y of ly, with diameter l. We
write:

ly cIpA (78)
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Figure 27: Dependence of the diffusion coefficient on the plasma parameter
nAd; Run 1 has (nA = 7.5.

40.

,, = (79)

where cl and c2 are dimensionless constants. We have already seen that
l4, l 5pi, so that C2 _ 5, and we expect that l. will be somewhat larger
than the system length in Run 1, so that cl _ 40. We also assume that
each vortex has an average depth - such that:

Omax -(8J
e

where c3 is another dimensionless constant, with c3  2. In what follows, we
shall assume that the edge turbulence is independent of the edge density, at
least when wpi _: w,. This assumption is motivated by the observation that
the cross-field equations (17,18) appear to be weakly dependent on density
when either wi > w~j or wp < wc, because in both limits we recover the
two-dimensional Navier-Stokes equation. As a consequence, we take the
constants c1, c2 and c3, as well as other parameters characterizing the edge
turbulence, to be density-independent. Note also that by scaling all lengths
to the gyro-radius as in Eqs.(78,79), and the peak amplitudes to the ion
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.1.

thermal energy as in Eq.(80), we have essentially stated all dependence on
magnetic field and temperature as well.

Let us now consider the edge spectrum at some fixed x, say x = l/2. We
shall assume that the spectrum has a universal dependence on wavenumber
which is expressed by:

<.,kJ >= n(kup,) < 1 (0)J > (1

where A is a continuous function, with A(O) = 1, which decreases rapidly
when IkyI pi > 1. In Eq.(81), we have the Fourier transform:

= fk 6(y)e-Ydy (82)

In particular, we have the estimate:

2 3 2 ( T.c3' 2 ~2< 1(O) 2' >=< ¢(y)dy >- (¢rnax/v) 2 =1 (83)

Now the diffusion coefficient for turbulent i-directed transport is given by
the integral over the velocity autocorrelation function:

D = < v,(O)v(t) > dt (84)

where v_(t) refers to the velocity of a test particle. At a given (y, t), the
x-component of the electron velocity is given by:

E~ 1 yv'(y t) = B 1 Z ikyO(k, t)eik*Y (85)
B k,

Introducing (85) into Eq.(84), we can then decompose the diffusion coeffi-
cient into a sum over the contributions from separate modes. In evaluating
(84), we simplify the integration over time by introducing a correlation time
for the interaction of an electron with a given wavenumber:

r,(ky) = w-1 T(kyp,) (86)

" where once again we have isolated the essential physical parameters. and
introduced a dimensionless function T(kYp3 ), such that T(1) 1, and
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T(kypi) -+ 0 as kp i -* oo. We also introduce a low-wavenumber cut-
off for the turbulent spectrum, by excluding from the contributions to the
diffusion coefficient those wavenumbers with:

r

kp< (87)

where, say,/3 1/2. Introducing (85) into Eq.(84), we obtain:

D urb = 1 Z k2 < 12> T(k) (88)
1Vg kltpi >3 Y ky (8

Using the various normalizations (78,79,80), we obtain:

DX Co (89)
eB

where co is the dimensionless constant defined by the expression:

C (23 dKK 2A(K)T(K) (90)
\ l 7r1

Taking cl 40, c2 ; 5 and c3  2, and assuming the integral to be of order
1, we find an estimate for co :

co z 0.02 (91)

a value somewhat smaller than implied by Eq.(74), but of the right order
of magnitude.

Eq.(90), which predicts a Bohm-type of diffusion, is also consistent with

the general result of Taylor and McNamara[43], who found that in two-
dimensions, E x B transport will always lead to a 1/B scaling of the diffusion
coefficient. Our assumption that the edge turbulence is density-independent
must then result in a diffusion coefficient which, dimensionally, can only
have a Bohm-like dependence on B and Ti.

For the specific case of Run 1, we can estimate the diffusion coefficient
from the discrete sum of Eq.(84). Assuming that /3 = 0.5, 7,(ky) = W71CS
and using the numerical values of the spectra as obtained in Fig.(19), we

find the estimate:

DXurb - 0.04 (92)
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a very rough estimate, which nonetheless is in accordance with the numer-
ical value obtained in Eq.(74). We shall now consider the density depen-
dence of the diffusion coefficient, as measured in our numerical simulations,
thereby qualifying the range of validity of Eq.(89), which assumes density-
independence.

7.6 Scaling of the Diffusion Coefficient with Density

We shall now consider the effect of particle density on the diffusion co-
efficient, as measured in the numerical simulations. We performed a se-
ries of numerical simulations which were variations of Run 1 (but in a
smaller system, with L, = 128), over which we studied the effect of vary-
ing the final wic ratio. We achieved this by varying the creation rate
s (the rate of creation of electron-ion pairs per time step) over the range
0.157 < s < 5.02, which resulted in a range of average steady-state densities
such that 0.63 < w/W 2. < 8.07. We then estimated the diffusion coefficient
using Eq.(74):

2n(L ) (93)

where o, = s/L L is the injection rate per unit area. The results are shown
in Fig.(28), where we plot Dx against The figure indicates that at
lower densities, in the range w,/w, < 3, the diffusion coefficient has an
approximately linear dependence on the density. At higher densities, with
LAI/ .Iw > 3, the diffusion coefficient levels off, and assumes what appears
to be a density independent value of:

D_ 0.04- (94)
eB

The density-independence of the diffusion coefficient is consistent with the
derivation of the previous section, where we argued that provided P /w >
1, the diffusion coefficient should be density independent.

In the simulations leading to Fig.(28), we were able to explore only t
a limited range of densities, amounting to an order of magnitude. This
limitation occured because we desired to keep Pw2 e < 1, while running
the simulation with the small numerical mass ratio mi/m, = 40. To reach
higher steady-state densities. while maintaining P./., < 1, would have
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Figure 28: Dependence of the diffusion coefficient on the steady-state den-
sity.

required using larger mass ratios. and, with the explicit scheme used in
ES2, would have resulted in prohibitively long computer runs. As noted in
Section 7.2, these limitations should be overcome in a future modification
of ES2, incorporating an electron E x B mover.

Notwithstanding the limitations in the range of densities explored, we
expect that the levelling-off of the diffusion coefficient with larger den-
sities reflects a general trend, and should be applicable at considerably
higher densities, for instance in a fusion environement, where one might
have as large as i03.

We should also note that while the diffusion coefficient appears to be
rather insensitive to the steady-state density, the nature of the edge turbu-
lence does appear to be modified by the larger injection rates. In Figs.(29),
we compare potentials for two different injection rates, which result in
steady-state densities such that LP,/;,i = 2.1 and wp/ww,/ = 2.8. The qual-
itative difference in these plots suggests that for ,;,/L, > 2 there occurs a
transition to a more turbulent regime, in which the long-lived vortices seen
in Run 1, ,,-C, = 1.3, are replaced by less stable structures.

Finally, we should emphasize that the diffusion coefficient of Eq.(89) is
an average for diffusion in the sheath. and is meant to be nonzero only in a
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Figure 29: Effect of higher densities on the potential stuctures in the edge
turbulence.
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layer of thickness of order I., 5pi. Beyond this boundary layer, transport
is predominantly collisional. Thus, in order to solve for the density profile
in a system with L. > l, we should write D(,(x) = Dtb' + D", where the
diffusion coefficients are given, respectively, in Eqs.(89) and (76), and then
solve the diffusion equation (72), with appropriate boundary conditions
(n(x = 0) = 0 and 0n(x = L )/0x = 0).

What is the actual particle flux to the wall induced by the sheath?
Assuming an edge density no, we can estimate the flux IF, through:

r'turb I

r. ; D nolx (95)

where Dtrb is given in Eq.(94) and 1, ; 5pi is the sheath thickness, which
establishes the edge density gradient. We find (for ;P, _> 2wcj):

O u = 10-2 vtino, (96)

Of course, in the steady-state, the outward flux predicted by Eq.(96) must
be matched by a coll'sional or turbulent flux from the inner regions of the
plasma. Eq.(96) then provides a boundary condition for the analysis of
transport in the interior of the plasma.

W.
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Figure 30: Global scenario for steady-state turbulence and transport in the

sheath.

8 Summary

In Fig.(30), we have summarized the interacting mechanisms which ac-
cording to our scenario, drive the turbulent, steady-state cross-field sheath.

The scenario proceeds as follows. The presence of the wall imposes the
formation of the initial edge shear layer, which is unstable to the Kelvin-
H elmholtz instability. This instability is in turn the source of the edge

turbulence, which after a transient phase, reaches a steady-state. In this

new, dynamic equilibrium, the long-wavelength components of the turbu-
lence, the vortices, modify the edge conditions, by broadening the edge
layer, and by maintaining large-amplitude, drifting potential structures.

Furthermore, the short-wavelength components of the turbulence create a

cross-field transport, by diffusing the electrons out of the system. As a
result, an ambipolar, outward flux of electrons and ions is set in motion,
with a diffusion coefficient which scales as the Bohm diffusion coefficient.
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Thus, with a constant injection of electron-ion pairs, the system maintains
a steady-state, in which the linear edge instability, the nonlinear dynamics
of the turbulence, and the outward particle diffusion all balance each other.

Our principal results can be summarized as follows:

1. The y-uniform cross-field sheath is linearly unstable to the Kelvin-
Helmholtz instability, with growth rates predicted by fluid theory in
the range Ikyipi < 1.

2. The turbulent cross-field sheath has an equilibrium thickness of order

. - 5 pi.

3. The edge turbulence principally consists of large-amplitude vortices,
with JbOl -, 3T,/e, and with a spacing of at least ly,- 40p,.

4. The drift velocity of the vortices parallel to the wall is of order vti/2,
leading to a turbulent spectrum with dispersion relation at small
wavenumbers wI IkI vt,/2.

5. The edge spectrum extends in wavenumber to Ik p, ; 1, beyond
which it rapidly decreases; the shorter-wavelength components have
a broad spectrum in frequency, with maximum width I1wl -, wci.

6. Transport in the sheath is Bohm-like, and is consistent with a model t.'

in which the electrons are driven-out by the short-wavelength turbu-
lence, with a subsequent, ambipolar diffusion of the ions. An estimate
of the diffusion coefficient is:

turb= 0.04 T > 2wi (97)

Dt,,,..

At lower edge densities, such that wpi < 2wci, the expression for the
diffusion coefficient has an additional factor, which is approximately
proportional to the density.

7. For a given edge density no, the sheath induces a particle flux to the
wall which is of order:

f.

"= 1O-2vtino, wpi 2wci (98)
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9Conclusions

Our numerical simulations have shown that the cross-field sheath between a
wall and a plasma is not a static structure, but is in fact a turbulent bound-
ary layer, with strong potential fluctuations and anomalous particle trans-
port. The driving mechanism for this turbulence is the Kelvin- Helmholt z
instability which arises from the sheared particle drifts created near the wall
by the strongly noneutral sheath. Provided it is replenished by an internal
flux of particles, corning for instance from a central bulk plasma or from a
diffuse ionization of neutrals, the sheath will maintain itself in a dynamic
equilibrium, in which the linear edge instability, the nonlinear dynamics
of the particles and the outward particle diffusion all balance each other.
It is important to emphasize that the turbulent behavior of the sheath is
a completely spontaneous phenomenon, which arises from the plasma-wall
interaction, and which does not require the imposition of external fields for
its sustenance.

We have found that the cross-field sheath assumes an equilibrium thick-
ness of order I., - 5 pi, and that it maintains large vortices, with amplitudes
6q - T1/e, which drift parallel to the wall at roughly half the ion thermal
velocity. The sheath also maintains a large, spatially-averaged potential
drop from the wall to the plasma, with A0 - -1.5T,/e, in sharp distinc-
tion with the unmagnetized sheath, where the plasma potential is higher
than at the wall. The average velocity shear profile remains linearly unsta-
ble at all times, a feature which shows that the saturation mechanism is
not quasilinear (relaxation of the space-averaged shear profile), but strongly
nonlinear.

A central result of this paper is that the sheath induces an anomalous
transport of particles, which is due to short- wavelength turbulence, and
which scales very much like Bohm diffusion, at least when w,,i 2w',j. At
lower densities, such that wTA < 2w,, the diffusion coefficient is found to
have an additional factor, proportional to the density. These results enable
us to model the entire cross-field sheath by a simple boundary condition,
Which relates the particle flux through the sheath to the edge density. This

- % boundary condition, which simply measures the sheath's "impedance" to
particle flow, should be very valuable as input in any model designed to ob-
tain the bulk plasma properties, and in which the detailed sheath dynam-ics
are unimportant.
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We believe that future numerical simulations of the cross-field sheath
should explore a larger range of parameters, in system size and in density,
than were feasible in the present work, in order to verify the scaling laws

* that we found to be valid for a more limited range of parameters. For
* instance, we were limited to systems in which a single vortex survived in

the steady-state, while we believe that longer systems should be able to
accomodate many vortices. Similarly, we were limited to exploring a range
of plasma densities such that w'./w 2 < 10, while we would like to explore

*values as high as L21 = 103 , representative of a fusion environment. A
* relatively straightforward modification of our simulation code ES2, to allow

for an E x B electron mover, should make all of these extended studies
* feasible at a reasonable cost in computer time.

Other avenues of research on cross-field dynamics might involve study-
ing the behavior of a free plasma boundary, far from the wall, in order to
observe the relaxation of the edge layer. A central question here is whether

* the Kelvin-Helmholtz turbulence can induce transport over very many ion
gyro-radii, or whether it is limited to a "natural" boundary layer, of thick-
ness comparable to the plasma wall sheath, that is roughly I., - 5pi. Let us
also note that in connection with active plasma devices, one might study
the behavior of the cross-field sheath whcn an external electrostatic po-
tential is applied: the resulting dynamics should bear much ressemblance
to those of the one-species magnetron, but with the distinct physics of a
two-species plasma. Finally, we note that our simulation results also raise
more fundamental questions regarding the nature of the edge turbulence,

which was only partially explained by the fluid theory. This suggests fur-
ther analytical research, applying a fully kinetic treatment to the problem.
with perhaps specially designed simulations to verify, for instance, vortex
stability and the mechanisms for generating short -wavelength fluctuations.
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* "Appendix

A The One-Dimensional Sheath

• " In this appendix, we study the structure of the sheath when the geometry
": is restricted to a single spatial dimension, the perpendicular distance from

the wall. This analysis is conceived as an initial value problem: we consider
the sheath that forms from the scrape-off of particles in an initially uniform
plasma, which is put into contact with the wall at some t = 0. The result,
for t > 2ir/wci, is a static sheath which extends some distance pi into the
plasma. In our discussion of this initial-value problem, we omit treating the
effects of collisionality and of a distributed source of particles, even though
it is only in the presence of these processes that the one-dimensional sheath
can maintain a steady-state transport to the wall. Such an analysis has been
undertaken by several authors[44,45]. In the present Section, our goal is
less ambitious. We consider the formation of the one-dimensional sheath
as a transient prelude to two-dimensional behavior, and as such restrict
our analysis to the initial sheath formation. The results of our study make
analytically plausible the values of y-uniform edge potential drop and of
the shear layer which almost instantaneously appear in the two-dimensional
simulations.

A.1 Analytic Expressions for the Electric Field

We should stress that the analysis in this Section is semi-quantitative. This
is because, despite the apparent simplicity of the formulation of the initial-
value problem, we have not been able to obtain a fully self-consistent so-
lution for the formation and structure of the cross-field sheath. This dif-
ficulty is linked to the multi-dimensional nature of the problem, where we
have to solve for the time-evolution of a distribution function f(x, v", v,, t)
which is three-dimensional in phase space. Furthermore, the wall boundary
condition is such that if f is Maxwellian far from the wall, it is nonethe-
less strongly non-Maxwellian in the edge layer, and thus a perturbation
approach is not feasible. Another complication arises because the sheath
thickness is of the same order as the gyroradius, and this implies that f has
a strong dependence on all of its independent variables ( f varie; a length
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scale of order pi, over a velocity scale vt, and over a time-scale w-'). In short,
there is no small parameter to facilitate an analytic solution, except, as we
shall see, for the ratio w,,,p, which can be considered small in a fusion
environment. Paradoxically, some aspects of the two-dimensional behavior
of the sheath are more amenable to analysis than in the one-dimensional
configurat ion.

.4. In what follows, we shall assume that the electron gyro-radius is negli-
gible and take pe -+ 0. Thus, the electrons are "frozen" onto the magnetic
field lines, and their density remains constant in space and time. With this
approximation, we need to consider only the evolution of the ion distribu-
tion function, f,(x, v.,, v,,, t), in the presence of a self-consistent electric field
Ex(x, t), taking into account the loss of ions by impact to the wall. Fur-
thermore, we shall consider only the time-asymptotic state of the sheath,
when t > 27r/w,.

With the wall at x = 0, we assume an initially uniform and Maxwellian
ion distribution function:

vi , ?!I, I t 0) 2irv2U+v2)/2v2i <x<., (9

To bring out the essential dependencies in the problem, we normalize all
variables according to:

t, = W'i x, x/pi, (100)

t= vf, F E~/Bovti, (101)

where pi = iw~ is the ion gyro-radius. With these normalizations.
the Vlasc'v-Poisson systemn can be written (dropping the primes for con-
venience)

Of O Of_
+V f+ [E(x, t) + v] - -0 (102)

Q (f(X, V" vut) dv,, dvy - 1) (103)

with the initial condition, f (x,v,,, v.,0) = exp [-(V2 + t,2)/2]/27r. The sys-
tem of Eqs.(102,103) is to be solved for 0 < x < oc. In Eq.(103), we
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have defined Q wPS/w, where w, is the plasma frequency of the uniform
plasma far from the wall. The parameter Q is the only remaining indepen-
dent parameter in the problem, which now consists in finding f(x, v.,, v, t)
and E(z, t) for t -+ so, as a function of Q. For fusion applications, we
have Q > 1, and this will afford some simplifications in our analysis of the
sheath structure.

Despite their apparent simplicity, Eqs.(102,103) have no obvious ana-
lytic solutions. This has led us to resort to a semi-qualitative approach
is solving them. Our basic assumption is to make what might be termed
a "local" approximation, in which the ion density at any one point is an
explicit function of the electric field evaluated at the same point. We first

*, assume that at any distance x, the ion density can be calculated by assiim-
ing that the electric field at that point has been constant in both space
and time since t = 0. With a constant electric field, an ion initially at a

* distance x and with velocity (vx, vt) will not collide with the wall provided
-. that its velocity lies in the region:

v >! -E + 1 (v 2 -gzv) (104)
2x X ( .)

We shall now approximate the local "free" ion density by an integral which
removes all particles which are not in the region specified by (104):

nF(E, x) = fw(x, v., v) dvx dvy , (105)
vy, g(X,vz)

Eq.(105) does not embody consistent approximations, and in fact as-
sumes two opposite physical limits, one for the ions which have impacted
into the wall, and another for the "free" ions which have remained in the
plasma. For the unconfined ions, finite orbit effects are implicitly taken
into account by assuming that they have indeed impacted into the wall,
and thus must be removed from the integration in Eq.(105). On the other
hand, we have neglected finite orbit effects for the confined ions, because in

. Eq.(105) we take the integrand to be the initial Maxwellian, without con-
sidering the mixing of contributions from different areas of phase space, as
would be required in a calculation using the full ion orbits. Despite these
simplifications, we believe that the spirit of the calculation is correct, in
that it should bring out the proper space scales and field amplitudes.

Using Eq.(109), one obtains an expression for the local free ion density:
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2' /2 erf (x(E + vy) + x'12)1/2 (106)nF (21r)12 -E- /2 L

where "erf" denotes the error function. For the analysis that follows,
Eq.(106) is a rather untractable expression for nt, and, in the spirit of
the previous approximations, we shall greatly simplify this equation. We
first make the hypothesis that the fields in the sheath are such that we can
everywhere assume that either E > 1 (near the wall, with x < 1), or that
x > 1 (in the tail of the sheath, where E < 1). We deliberately neglect
the transition region, where E - 1 and x -,- 1, hoping that the essential
behavior comes from the asymptotic regions near and fax from the wall. As
we shall see, these approximations are plausible provided Q = W 2i/w 2 1.

With the simplifying assumptions of the previous paragraph, we can
uniformly neglect the vy-dependence in the argument for the error function,
and furthermore, we set the lower limit of the integral in Eq.(10C) to -c.
The result of these simplifications is:

nt = erf [(xE + X2/2)1/2] (107)

We now impose another sweeping approximation, by replacing the error
function in Eq.(107) by the expression:

erf(z) -- 1 - e, (108)

an approximation which incorporates the vanishing of the error function at
z = 0 (albeit with the wrong dependence on z), and the correct exponential
dependence for z -* oo.

Given nF(E,x) as defined by Eq.(105), we then introduce it into Pois-
son s equation:

dE
= Q(nF -1), (109)

Using (108) in Eq.(107), and introducing the resulting nF into Poisson's
equation, we obtain:

dE / 2E= Q exp 2-(/E + x/2)) (110)
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This equation is to be solved with the sole boundary condition that E(x)
vanishes for large x, a condition which uniquely determines the solution
with Q as a parameter. In particular, Eq.(1l0) uniquely determines the
value of the electric field at the wall, E(O) as a function of Q.

Despite all our manipulations, Eq.(16) is not yet analytically solvable.
However, one can extract important information on the nature of the sheath
by examining the scaling of the variables on Q. Let us write = Q"/2 x and

=- E/Q 1/2 . We the have:

dt = exp (-( /t + /2Q))(11
dE

We now see that if we have Q > 1, there exists an edge layer extending to
some - 1 where Eq.(111) is independent of Q, and has the form:

dES=e (112)

In physical units, this edge region extends to x p,/Q 1 2 = Ads, and the
electric field has an amplitude E. _ Qi/2Vt = (wop,/w,)vt > vt,. With
the requirement that the electric field vanishes far from the wall, we can
roughly estimate E(O) from Eq.(112) by assuming that in the right-hand
side of the equation, we can take the electric field to be constant and equal
to its value right at the wall. Integrating from 0 to oc, we then have the
identity:

E(O) = j e-t(O)d (113)

which immediatdy yields E(0) = 1. In physical units:

Wpi
E.(O) -- Bov 1 , (114)

The solution of Eq.(111) must be connected to the "outer solution" of
Eq.(112), in the region > 1. The scaling of Eq.(111) breaks-down when
E( ) becomes so small that it becomes comparable to the second term in
the exponential in Eq.(111). This occurs when x - 1 and k 1/Q, or in
physical units, we have E.(Ad,) - Bovt,. Beyond this point, Eq.(16) predicts
the decay of the electric over a length comparable to the gyro-radius p,.
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To summarize the results of our approximations, we have found that
with ",p,/-,Ct > 1, Poisson's equation predicts the existence of a "composite"
sheath, with an inner and an outer layer. There is a first region, an "inner
sheath", extending up to a Debye length Ad;, for which the peak electric
field was given by Eq.(114), E, - BoVt,(Wp,/~wc). Beyond this inner sheath,
there is a boundary layer extending to roughly a gyro-radius p, from the
wall, with a peak electric field of order E,.,- Bovt,.

A.2 Comparison with one-dimensional particle simu-
lations

We now briefly compare the analytic results of the previous Section with
those of one-dimensional particle simulations. In Fig.(31a,b), we show the
electric fields obtained one-dimensioral particle-in-cell simulations of the
cross-field sheath, for wp,/wai = 1.9 and 6.3. In effect, the simulation algo-

rithrm exactly solves Eq.(102), to within the bounds imposed by the thermal
noise induced by the finite particles. In Figs.(31a,b), we can see that the
strict division of the sheath into inner and outer layers, as was implied by
the considerations of the previous subsection, is not observed in the simu-
lation electric fields E,,(x). On the other hand, the overall sheath is indeed
an ion gyro-radius in thickness. Furthermore, we have found that the scal-
ing for the peak electric field at the wall does obey Eq.(??) remarquably
well, whenever we have wpi/wj > 1. This can be seen in Fig.(32). where we
plot the value of the electric field at the wall as a function of the parameter
Lpj/w~j. Note that for wpj/w,, < 1, the electric field appears to scale as
E,(O)/Bovtj L , /W.
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Figure 31: Profiles of the cross-field sheath in one-dimensional simulations.
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